【題目】下列結(jié)論中正確的個數(shù)是(

①在中,“”是“”的必要不充分條件;

②若,的最小值為2;

③夾在圓柱的兩個平行截面間的幾何體是圓柱;

④數(shù)列的通項公式為,則數(shù)列的前項和.(

A.0B.1C.2D.3

【答案】A

【解析】

由三角函數(shù)的單調(diào)性以及充分條件和必要條件的定義進(jìn)行判斷①,舉反例判斷②,根據(jù)圓柱的定義判斷③,由等比數(shù)列的性質(zhì)與求和公式判斷④.

對于①,在中,,得,反之也成立,即的充要條件,所以①不正確;

對于②,當(dāng)時,,所以,所以,最小值為2,不正確,所以②不正確;

對于③,夾在圓柱的兩個平行截面間的幾何體是圓柱,不正確,只有當(dāng)截面平行于底面時是圓柱,所以③不正確;

對于④,數(shù)列的通項公式為,當(dāng)時,數(shù)列項和

時,,所以④不正確.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)求函數(shù)的單調(diào)遞減區(qū)間;

(2)求函數(shù)在區(qū)間上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的單調(diào)性;

2)若函數(shù)有極大值點,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點到準(zhǔn)線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點為,點的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點到準(zhǔn)線的距離為,直線與拋物線交于兩點,過這兩點分別作拋物線的切線,且這兩條切線相交于點.

(1)若的坐標(biāo)為,求的值;

(2)設(shè)線段的中點為,點的坐標(biāo)為,過的直線與線段為直徑的圓相切,切點為,且直線與拋物線交于兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為上一點.

(1)求橢圓的方程;

(2)設(shè)分別關(guān)于兩坐標(biāo)軸及坐標(biāo)原點的對稱點,平行于的直線于異于的兩點.點關(guān)于原點的對稱點為.證明:直線軸圍成的三角形是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年1月至2月由新型冠狀病毒引起的肺炎病例陡然增多,為了嚴(yán)控疫情傳播,做好重點人群的預(yù)防工作,某地區(qū)共統(tǒng)計返鄉(xiāng)人員人,其中歲及以上的共有.人中確診的有名,其中歲以下的人占.

確診患新冠肺炎

未確診患新冠肺炎

合計

50歲及以上

40

50歲以下

合計

10

100

1)試估計歲及以上的返鄉(xiāng)人員感染新型冠狀病毒引起的肺炎的概率;

2)請將下面的列聯(lián)表補充完整,并判斷是否有%的把握認(rèn)為是否確診患新冠肺炎與年齡有關(guān);

參考表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】201835日上午,李克強(qiáng)總理做政府工作報告時表示,將新能源汽車車輛購置稅優(yōu)惠政策再延長三年,自201811日至20201231日,對購置的新能源汽車免征車輛購置稅.新能源汽車銷售的春天來了!從衡陽地區(qū)某品牌新能源汽車銷售公司了解到,為了幫助品牌迅速占領(lǐng)市場,他們采取了保證公司正常運營的前提下實行薄利多銷的營銷策略(即銷售單價隨日銷量(臺)變化而有所變化),該公司的日盈利(萬元),經(jīng)過一段時間的銷售得到的一組統(tǒng)計數(shù)據(jù)如下表:

日銷量

1

2

3

4

5

日盈利萬元

6

13

17

20

22

將上述數(shù)據(jù)制成散點圖如圖所示:

1)根據(jù)散點圖判斷中,哪個模型更適合刻畫之間的關(guān)系?并從函數(shù)增長趨勢方面給出簡單的理由;

2)根據(jù)你的判斷及下面的數(shù)據(jù)和公式,求出關(guān)于的回歸方程,并預(yù)測當(dāng)日銷量時,日盈利是多少?

參考公式及數(shù)據(jù):線性回歸方程,其中,;

,

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知實數(shù)滿足,且.證明:存在整數(shù),使得.

查看答案和解析>>

同步練習(xí)冊答案