實(shí)數(shù),,a,b,c從小到大排列為       

 

【答案】

.b<a<c 

【解析】解:因?yàn)閷?shí)數(shù),,故b<a<c

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實(shí)數(shù)),滿足a-b+c=0,對(duì)于任意實(shí)數(shù)x 都有f (x)-x≥0,并且當(dāng)x∈(0,2)時(shí),有f (x)≤(
x+1
2
)2

(1)求f (1)的值;
(2)證明:ac≥
1
16
;
(3)當(dāng)x∈[-2,2]且a+c取得最小值時(shí),函數(shù)F(x)=f (x)-mx (m為實(shí)數(shù))是單調(diào)的,求證:m≤-
1
2
或m≥
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)設(shè)
a
是已知的平面向量且
a
0
,關(guān)于向量
a
的分解,有如下四個(gè)命題:
①給定向量
b
,總存在向量
c
,使
a
=
b
+
c
;
②給定向量
b
c
,總存在實(shí)數(shù)λ和μ,使
a
b
c

③給定單位向量
b
和正數(shù)μ,總存在單位向量
c
和實(shí)數(shù)λ,使
a
b
c
;
④給定正數(shù)λ和μ,總存在單位向量
b
和單位向量
c
,使
a
b
c

上述命題中的向量
b
,
c
a
在同一平面內(nèi)且兩兩不共線,則真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=ax2+bx+c(a≠0),且方程f(x)=x無實(shí)根.現(xiàn)有四個(gè)命題
①若a>0,則不等式f[f(x)]>x對(duì)一切x∈R成立;
②若a<0,則必存在實(shí)數(shù)x0使不等式f[f(x0)]>x0成立;
③方程f[f(x)]=x一定沒有實(shí)數(shù)根;
④若a+b+c=0,則不等式f[f(x)]<x對(duì)一切x∈R成立.
其中真命題的個(gè)數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c均為實(shí)數(shù)),滿足a-b+c=0,對(duì)于任意實(shí)數(shù)x都有f(x)-x≥0,并且當(dāng)x∈(0,2)時(shí),有f(x)≤(
x+12
)2
,
(1)求f(1)的值;
(2)求ac的最小值;
(3)當(dāng)x∈[-2,2]且a+c取得最小值時(shí),函數(shù)F(x)=f(x)-mx(m為實(shí)數(shù))是單調(diào)的,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c是實(shí)數(shù),試比較a+b+c與ab+bc+ca的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案