精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ax2+a2x+2b-a3,當x∈(-2,6)時,其值為正,而當x∈(-∞,-2)∪(6,+∞)時,其值為負.
(I)求實數a,b的值及函數f(x)的解析式;
(II)設F(x)=-
k4
f(x)+4x+12k,問k取何值時,方程F(x)=0有正根?
分析:(Ⅰ)由題意知-2,6為方程f(x)=0的兩根,由韋達定理可求a,b值;
(Ⅱ)把F(x)=0表示出來,根據二次方程的根與系數關系求出根,利用根大于0這一條件可求k范圍.
解答:解:(Ⅰ)由題意可知-2和6是方程f(x)=0的兩根,
-a=-2+6=4
2b-a3
a
=-2×6=-12
,解得
a=-4
b=-8

∴此時a=-4,b=-8.
f(x)=-4x2+16x+48.
(Ⅱ)F(x)=-
k
4
(-4x2+16x+48)+4x+12k=kx2+4(1-k)x,
當k=0時,F(x)=4x,不合題意;
當k≠0時,F(x)=0的一根為
4(k-1)
k

則有k(k-1)>0,解得k>1或k<0.
故當k>1或k<0時,方程F(x)=0有正根.
點評:本題考查二次函數解析式的求法及韋達定理,屬基礎題,難度不大.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案