【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點B(0,﹣1),且在( , )上單調,同時f(x)的圖象向左平移π個單位之后與原來的圖象重合,當x1 , x2∈(﹣ ,﹣ ),且x1≠x2時,f(x1)=f(x2),則f(x1+x2)=( )
A.﹣
B.﹣1
C.1
D.
【答案】B
【解析】解:由函數(shù)f(x)=2sin(ωx+φ)的圖象過點B(0,﹣1),
∴2sinφ=﹣1,解得sinφ=﹣ ,
又|φ|< ,∴φ=﹣ ,
∴f(x)=2sin(ωx﹣ );
又f(x)的圖象向左平移π個單位之后為
g(x)=2sin[ω(x+π)﹣ ]=2sin(ωx+ωπ﹣ ),
由兩函數(shù)圖象完全重合知ωπ=2kπ,∴ω=2k,k∈Z;
又 ﹣ ≤ = ,
∴ω≤ ,∴ω=2;
∴f(x)=2sin(2x﹣ ),其圖象的對稱軸為x= + ,k∈Z;
當x1,x2∈(﹣ ,﹣ ),其對稱軸為x=﹣3× + =﹣ ,
∴x1+x2=2×(﹣ )=﹣ ,
∴f(x1+x2)=f(﹣ )
=2sin[2×(﹣ )﹣ ]
=2sin(﹣ )
=﹣2sin
=﹣2sin =﹣1.
應選:B.
【考點精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.
科目:高中數(shù)學 來源: 題型:
【題目】已知:函數(shù)對一切實數(shù),都有成立,且.
()求的值.
()求的解析式.
()已知,設當時,不等式恒成立, 當時,是單調函數(shù),如果滿足成立的的集合記為,滿足成立的的集合記為,求(為全集).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將參加夏令營的600名學生編號為:001,002,…,600,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽得的編號為003.這600名學生分住在3個營區(qū),從001到300住在第1營區(qū),從301到495住在第2營區(qū),從496到600住在第3營區(qū),則3個營區(qū)被抽中的人數(shù)依次為( )
A. 26,16,8 B. 25,16,9
C. 25,17,8 D. 24,17,9
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,底面△ABC是等邊三角形,側面AA1B1B為正方形,且AA1⊥平面ABC,D為線段AB上的一點.
(Ⅰ)若BC1∥平面A1CD,確定D的位置,并說明理由;
(Ⅱ)在(Ⅰ)的條件下,求二面角A1D﹣C﹣BC1的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是定義在上的奇函數(shù),且,若,時,有成立.
(Ⅰ)判斷在上的單調性,并證明;
(Ⅱ)解不等式;
(Ⅲ)若對所有的恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()是偶函數(shù).
(1)求的值;
(2)若函數(shù)沒有零點,求的取值范圍;
(3)若函數(shù), 的最小值為0,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|x+a|.
(1)若a=2,解關于x的不等式f(x)+f(x﹣3)≥5;
(2)若關于x的不等式f(x)﹣f(x+2)+4≥|1﹣3m|恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱柱的所有棱長都相等,且側棱垂直于底面,由沿棱柱側面經過棱到點的最短路線長為,設這條最短路線與的交點為.
(1)求三棱柱的體積;
(2)證明:平面平面.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com