(2013•泰安一模)設(shè)雙曲線
x2
m
+
y2
n
=1
的離心率為2,且一個(gè)焦點(diǎn)與拋物線x2=8y的焦點(diǎn)相同,則此雙曲線的方程為
y2-
x2
3
=1
y2-
x2
3
=1
分析:利用拋物線的方程先求出拋物線的焦點(diǎn)即雙曲線的焦點(diǎn),利用雙曲線的方程與系數(shù)的關(guān)系求出a2,b2,利用雙曲線的三個(gè)系數(shù)的關(guān)系列出m,n的一個(gè)關(guān)系,再利用雙曲線的離心率的公式列出關(guān)于m,n的另一個(gè)等式,解方程組求出m,n的值,代入方程求出雙曲線的方程.
解答:解:拋物線的焦點(diǎn)坐標(biāo)為(0,2),
所以雙曲線的焦點(diǎn)在y軸上且c=2,
所以雙曲線的方程為
y2
n
-
x2
-m
=1

即a2=n>0,b2=-m>0,
所以a=
n
,又e=
c
a
=
2
n
=2

解得n=1,
所以b2=c2-a2=4-1=3,即-m=3,m=-3,
所以雙曲線的方程為y2-
x2
3
=1

故答案為:y2-
x2
3
=1
點(diǎn)評(píng):解決雙曲線、橢圓的三參數(shù)有關(guān)的問(wèn)題,有定注意三參數(shù)的關(guān)系:c2=a2+b2而橢圓中三參數(shù)的關(guān)系為a2=c2+b2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安一模)已知集合A={-1,1},B={x|1≤2x<4},則A∩B等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安一模)設(shè)奇函數(shù)f(x)在[-1,1]上是增函數(shù),f(-1)=-1.若函數(shù)f(x)≤t2-2at+1對(duì)所有的x∈[-1,1]都成立,則當(dāng)a∈[-1,1]時(shí),t的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安一模)若a,b∈R,且ab>0,則下列不等式中,恒成立的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安一模)某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成6個(gè)等級(jí),等級(jí)系數(shù)ξ依次為1,2,3,4,5,6,按行業(yè)規(guī)定產(chǎn)品的等級(jí)系數(shù)ξ≥5的為一等品,3≤ξ<5的為二等品,ξ<3的為三等品.
若某工廠生產(chǎn)的產(chǎn)品均符合行業(yè)標(biāo)準(zhǔn),從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下;

(I)以此30件產(chǎn)品的樣本來(lái)估計(jì)該廠產(chǎn)品的總體情況,試分別求出該廠生產(chǎn)原一等品、二等品和三等品的概率;
(II)已知該廠生產(chǎn)一件產(chǎn)品的利潤(rùn)y(單位:元)與產(chǎn)品的等級(jí)系數(shù)ζ的關(guān)系式為y=
1,ξ<3
2,3≤ξ<5
4,ξ≥5
,若從該廠大量產(chǎn)品中任取兩件,其利潤(rùn)記為Z,求Z的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•泰安一模)已知函數(shù)f(x)=(ax2+bx+c)ex且f(0)=1,f(1)=0.
(I)若f(x)在區(qū)間[0,1]上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(II)當(dāng)a=0時(shí),是否存在實(shí)數(shù)m使不等式2f(x)+4xex≥mx+1≥-x2+4x+1對(duì)任意x∈R恒成立?若存在,求出m的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案