14.已知橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$(t為參數(shù))
(1)將直線l與橢圓C的參數(shù)方程化為普通方程;
(2)求直線l與橢圓C相交的弦長(zhǎng).

分析 (1)消去參數(shù),將直線l與橢圓C的參數(shù)方程化為普通方程;
(2)直線l與橢圓C聯(lián)立,可得x=±$\frac{2\sqrt{5}}{5}$,利用弦長(zhǎng)公式求直線l與橢圓C相交的弦長(zhǎng).

解答 解:(1)橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=sinθ}\end{array}\right.$(θ為參數(shù)),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=t}\\{y=t}\end{array}\right.$(t為參數(shù))
消去參數(shù),可得直線l的普通方程為y=x;橢圓C的普通方程為$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(2)直線l與橢圓C聯(lián)立,可得x=±$\frac{2\sqrt{5}}{5}$,
∴弦長(zhǎng)=$\sqrt{1+1}•2•\frac{2\sqrt{5}}{5}$=$\frac{4\sqrt{10}}{5}$.

點(diǎn)評(píng) 本題考查參數(shù)方程、化為普通方程,考查直線與橢圓的位置關(guān)系,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.函數(shù)y=lg(x+1)的定義域是( 。
A.[-1,+∞)B.(-1,+∞)C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)$(f(x,y))=({\begin{array}{l}xy1\end{array}})({\begin{array}{l}1&0&1\\ 0&1&1\\ 1&1&{-2}\end{array}})({\begin{array}{l}x\\ y\\ 1\end{array}})$,點(diǎn)A(x1,y1)滿足方程f(x,y)=0,點(diǎn)B(-1,-1).
(1)計(jì)算$|{\overrightarrow{AB}}$|; 
(2)O為坐標(biāo)原點(diǎn),當(dāng)$\overrightarrow{AO}$⊥$\overrightarrow{BO}$時(shí),計(jì)算$|{\overrightarrow{AO}}$|; 
(3)求$|{\overrightarrow{OA}}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知b>0,曲線$\left\{{\begin{array}{l}{x=cosϕ+a}\\{y=sinϕ+b}\end{array}}$(φ為參數(shù))與曲線ρ=4cosθ相交,則在平面直角坐標(biāo)系內(nèi),直線x+$\sqrt{3}$y=0被點(diǎn)(a,b)所在平面區(qū)域截得的弦長(zhǎng)為4$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在平面直角坐標(biāo)系中,圓M的方程(x-2)2+y2=1,若直線mx+y+2=0上至少存在一點(diǎn)P,使得以P為圓心,1為半徑的圓與圓M有公共點(diǎn),則m的取值范圍是( 。
A.m≤0B.m≤-1C.m≥2D.m≤-$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=x2+2x-4+$\frac{a}{x}$.
(1)若a=4,求f(x)的單調(diào)區(qū)間.
(2)若f(x)有三個(gè)零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1,以橢圓的左頂點(diǎn)T為圓心作圓T:(x+2)2+y2=r2(r>0).設(shè)圓T與橢圓C交于點(diǎn)M與點(diǎn)N.
(1)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值;
(2)設(shè)點(diǎn)P是橢圓C上異于M,N的任意一點(diǎn),且直線MP,NP分別與x軸交于點(diǎn)R,S,O為坐標(biāo)原點(diǎn),求證:丨OR丨•丨OS丨為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.定義在R上的函數(shù)f(x)滿足f′(x)<1,f(1)=2,則滿足f(2x-1)<2x的x的范圍是( 。
A.(1,+∞)B.(-∞,1)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為菱形,∠ABC=60°,AB=2PA,E是線段BC的中點(diǎn).
(Ⅰ)求異面直線PE和CD所成的角的余弦值;
(Ⅱ)求平面PAE與平面PCD所成銳二面角的余弦值;
(Ⅲ)在線段PD上是否存在一點(diǎn)F,使得CF∥平面PAE,并給出證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案