A. | 等邊三角形 | B. | 等腰三角形 | C. | 等腰直角三角形 | D. | 直角三角形 |
分析 根據(jù)題中的條件acosA+bcosB=ccosC通過正弦定理二倍角公式和三角形的內(nèi)角和公式,利用三角函數(shù)的和(差)角公式和誘導公式得到2cosAcosB=0,得到A或B為 $\frac{π}{2}$得到答案即可.
解答 解:∵acosA+bcosB=ccosC,
由正弦定理可得:
sinAcosA+sinBcosB=sinCcosC,
∴sin2A+sin2B=sin2C,
和差化積可得:2sin(A+B)cos(A-B)=2sinCcosC,
∴cos(A-B)=-cos(A+B),2cosAcosB=0,
∴cosA=0或cosB=0,得A=$\frac{π}{2}$或B=$\frac{π}{2}$,
∴△ABC是直角三角形.
故選:D.
點評 考查學生三角函數(shù)中的恒等變換應用的能力.要靈活運用正弦定理、三角函數(shù)的和(差)角公式和誘導公式.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{2}$] | B. | [$\frac{1}{2},+∞$) | C. | ($\frac{1}{4},\frac{1}{2}$] | D. | ($\frac{1}{4},+∞$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8π | B. | $\frac{25π}{3}$ | C. | 9π | D. | $\frac{28π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com