如圖,已知梯形ABCD中|AB|=2|CD|,點(diǎn)E滿足,雙曲線過C、D、E三點(diǎn),且以A、B為焦點(diǎn).當(dāng)≤λ≤時(shí),求雙曲線離心率e的取值范圍.
解:如題圖,以直線AB為x軸,AB的垂直平分線為y軸,建立直角坐標(biāo)系xOy,則CD⊥y軸.因?yàn)殡p曲線經(jīng)過點(diǎn)C、D,且以A、B為焦點(diǎn),由雙曲線的對(duì)稱性知C、D關(guān)于y軸對(duì)稱.根據(jù)已知,設(shè)A(-c,0),C,E(x0,y0),其中c=|AB|為雙曲線的半焦距,h是梯形的高.由,即=λ,得x0=.不妨設(shè)雙曲線的方程為-=1,則離心率e=.
由點(diǎn)C、E在雙曲線上,將點(diǎn)C、E的坐標(biāo)和e=代入雙曲線的方程得
由①式得=-1,、
將③式代入②式,整理得 (4-4λ)=1+2λ,所以λ=1-.由已知≤λ≤,所以≤1-≤,解之得 ≤e≤,所以雙曲線的離心率的取值范圍為[,].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
若斜率為的直線l與橢圓+=1(a>b>0)有兩個(gè)不同的交點(diǎn),且這兩個(gè)交點(diǎn)在x軸上的射影恰好是橢圓的兩個(gè)焦點(diǎn),則該橢圓的離心率為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓+=1(a>b>0)的離心率為,且過點(diǎn)P,A為上頂點(diǎn),F(xiàn)為右焦點(diǎn).點(diǎn)Q(0,t)是線段OA(除端點(diǎn)外)上的一個(gè)動(dòng)點(diǎn),
過Q作平行于x軸的直線交直線AP于點(diǎn)M,以QM為直徑的圓的圓心為N.
(1) 求橢圓方程;
(2) 若圓N與x軸相切,求圓N的方程;
(3) 設(shè)點(diǎn)R為圓N上的動(dòng)點(diǎn),點(diǎn)R到直線PF的最大距離為d,求d的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,橢圓的中心在原點(diǎn)O,右焦點(diǎn)F在x軸上,橢圓與y軸交于A、B兩點(diǎn),其右準(zhǔn)線l與x軸交于T點(diǎn),直線BF交橢圓于C點(diǎn),P為橢圓上弧AC上的一點(diǎn).
(1) 求證:A、C、T三點(diǎn)共線;
(2) 如果,四邊形APCB的面積最大值為,求此時(shí)橢圓的方程和P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F的坐標(biāo)為(1,0).
(1) 求拋物線C的標(biāo)準(zhǔn)方程;
(2) 設(shè)M、N是拋物線C的準(zhǔn)線上的兩個(gè)動(dòng)點(diǎn),且它們的縱坐標(biāo)之積為-4,直線MO、NO與拋物線的交點(diǎn)分別為點(diǎn)A、B,求證:動(dòng)直線AB恒過一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(-1,1),P是動(dòng)點(diǎn),且△POA的三邊所在直線的斜率滿足kOP+kOA=kPA.
(1) 求點(diǎn)P的軌跡C的方程;
(2) 若Q是軌跡C上異于點(diǎn)P的一個(gè)點(diǎn),且=λ,直線OP與QA交于點(diǎn)M,問:是否存在點(diǎn)P,使得△PQA和△PAM的面積滿足S△PQA=2S△PAM?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知直線l經(jīng)過點(diǎn)(1,0)且一個(gè)方向向量d=(1,1).橢圓C:=1(m>1)的左焦點(diǎn)為F1.若直線l與橢圓C交于A,B兩點(diǎn),滿足·=0,求實(shí)數(shù)m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com