【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.
(1)已畫(huà)出函數(shù)在軸左側(cè)的圖像,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的增區(qū)間;
⑵寫出函數(shù)的解析式和值域.
【答案】(1)函數(shù)的增區(qū)間是,.
(2) .
【解析】
試題分析:(1)因?yàn)楹瘮?shù)為偶函數(shù),故圖象關(guān)于y軸對(duì)稱,由此補(bǔ)出完整函數(shù)f(x)的圖象即可,再由圖象直接可寫出f(x)的增區(qū)間;(2)可由圖象利用待定系數(shù)法求出x>0時(shí)的解析式,也可利用偶函數(shù)求解析式,值域可從圖形直接觀察得到
試題解析:(1)因?yàn)楹瘮?shù)為偶函數(shù),故圖象關(guān)于y軸對(duì)稱,補(bǔ)出完整函數(shù)圖象如圖:………3分
所以f(x)的遞增區(qū)間是(﹣1,0),(1,+∞).………………5分
(2)設(shè)x>0,則﹣x<0,
所以f(﹣x)=x2﹣2x,
因?yàn)?/span>f(x)是定義在R上的偶函數(shù),
所以f(﹣x)=f(x),
所以x>0時(shí),f(x)=x2﹣2x,………………9分
故f(x)的解析式為………………10分
值域?yàn)?/span>{y|y≥﹣1}………………12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知由實(shí)數(shù)組成的等比數(shù)列{an}的前項(xiàng)和為Sn , 且滿足8a4=a7 , S7=254.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)n∈N* , bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是( )
A. 在(-2,1)上f(x)是增函數(shù) B. 在(1,3)上f(x)是減函數(shù)
C. 當(dāng)x=2時(shí),f(x)取極大值 D. 當(dāng)x=4時(shí),f(x)取極大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列中,如果對(duì)任意都有(為常數(shù)),則稱為等差比數(shù)列,稱為公差比.現(xiàn)給出下列命題:
①等差比數(shù)列的公差比一定不為;
②等差數(shù)列一定是等差比數(shù)列;
③若,則數(shù)列是等差比數(shù)列;
④若等比數(shù)列是等差比數(shù)列,則其公比等于公差比.
其中正確的命題的序號(hào)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知命題 “存在”,命題:“曲線表示焦點(diǎn)在軸上的橢圓”,命題 “曲線表示雙曲線”
(1)若“且”是真命題,求實(shí)數(shù)的取值范圍;
(2)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)滿足,且.
()求的解析式.
()若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
()若關(guān)于的方程有區(qū)間上有唯一實(shí)數(shù)根,求實(shí)數(shù)的取值范圍(相等的實(shí)數(shù)根算一個(gè)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的最小正周期與單調(diào)遞減區(qū)間;
(2)若函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的倍,所得的圖象與直線交點(diǎn)的橫坐標(biāo)由小到大依次是,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓,圓,經(jīng)過(guò)原點(diǎn)的兩直線滿足,且交圓于不同兩點(diǎn)交, 圓于不同兩點(diǎn),記的斜率為
(1)求的取值范圍;
(2)若四邊形為梯形,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某水產(chǎn)養(yǎng)殖基地要將一批海鮮用汽車從所在城市甲運(yùn)至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且運(yùn)費(fèi)由水產(chǎn)養(yǎng)殖基地承擔(dān).若水產(chǎn)養(yǎng)殖基地恰能在約定日期(×月×日)將海鮮送達(dá),則銷售商一次性支付給水產(chǎn)養(yǎng)殖基地萬(wàn)元;若在約定日期前送到,每提前一天銷售商將多支付給水產(chǎn)養(yǎng)殖基地萬(wàn)元;若在約定日期后送到,每遲到一天銷售商將少支付給水產(chǎn)養(yǎng)殖基地萬(wàn)元.為保證海鮮新鮮度,汽車只能在約定日期的前兩天出發(fā),且只能選擇其中的一條公路運(yùn)送海鮮,已知下表內(nèi)的信息:
統(tǒng)計(jì)信息 汽車 行駛路線 | 不堵車的情況下到達(dá)城市乙所需時(shí)間(天) | 堵車的情況下到達(dá)城市乙所需時(shí)間(天) | 堵車的概率 | 運(yùn)費(fèi)(萬(wàn)元) |
公路 | ||||
公路 |
(注:毛利潤(rùn)銷售商支付給水產(chǎn)養(yǎng)殖基地的費(fèi)用運(yùn)費(fèi))
(Ⅰ)記汽車走公路時(shí)水產(chǎn)養(yǎng)殖基地獲得的毛利潤(rùn)為(單位:萬(wàn)元),求的分布列和數(shù)學(xué)期望.
(Ⅱ)假設(shè)你是水產(chǎn)養(yǎng)殖基地的決策者,你選擇哪條公路運(yùn)送海鮮有可能讓水產(chǎn)養(yǎng)殖基地獲得的毛利潤(rùn)更多?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com