精英家教網 > 高中數學 > 題目詳情

10名女生中選出3人,8名男生中選出2人,擔任5種不同職務的方法數為

[  ]

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

為了解某班學生喜愛打籃球是否與性別有關,對此班50人進行了問卷調查得到了如下的列聯表:
喜愛打籃球 不喜愛打籃球 合計
男生 5
女生 10
合計 50
已知在全部50人中隨機抽取1人抽到喜愛打籃球的學生的概率為
3
5

(1)請將上面的列聯表補充完整;
(2)是否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由;
(3)已知喜愛打籃球的10位女生中,A1,A2,A3,A4,A5還喜歡打羽毛球,B1,B2,B3還喜歡打乒乓球,C1,C2還喜歡踢足球,現再從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進行其他方面的調查,求B1和C1不全被選中的概率.
下面的臨界值表供參考:
p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源:2013屆河北省高二上學期期末考試理科數學 題型:解答題

(本題滿分10分)從4名男生,3名女生中選出三名代表,(1)不同的選法共有多少種?(2)至少有一名女生的不同的選法共有多少種?(3)代表中男、女生都有的不同的選法共有多少種?

 

 

查看答案和解析>>

科目:高中數學 來源: 題型:

(08年莆田四中一模文)從4名男生和3名女生中選出3人,分別從事三項不同的工作,若這3人中至少有1名女生,則選派方案共有                         (     )

A.108種         B.186種             C.216種             D.270種

查看答案和解析>>

科目:高中數學 來源:2013屆江西省高二下學期期中考試文科數學試卷(解析版) 題型:解答題

為了解某班學生喜愛打羽毛球是否與性別有關,對本班50人進行了問卷調查得到了如下的列聯表:

 

 

喜愛打羽毛球

不喜愛打羽毛球

合計

男生

 

5

 

女生

10

 

 

 

 

 

50

 

 

 

 

 

已知在全部50人中隨機抽取1人抽到不喜愛打羽毛球的學生的概率

(1)請將上面的列聯表補充完整;

(2)是否有99.5%的把握認為喜愛打羽毛球與性別有關?說明你的理由;

(3)已知喜愛打羽毛球的10位女生中,還喜歡打籃球,還喜歡打乒乓球,還喜歡踢足球,現在從喜歡打籃球、喜歡打乒乓球、喜歡踢足球的6位女生中各選出1名進行其他方面的調查,求女生不全被選中的概率.下面的臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

 

 

 

 

 

(參考公式:其中.)

【解析】第一問利用數據寫出列聯表

第二問利用公式計算的得到結論。

第三問中,從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結果組成的基本事件如下:

, ,

基本事件的總數為8

表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于 2個基本事件由對立事件的概率公式得

解:(1) 列聯表補充如下:

 

 

喜愛打羽毛球

不喜愛打羽毛球

合計

男生

20

25

女生

10

15

25

合計

30

20

50

(2)∵

∴有99.5%的把握認為喜愛打籃球與性別有關

(3)從6位女生中選出喜歡打籃球、喜歡打乒乓球、喜歡踢足球的各1名,其一切可能的結果組成的基本事件如下:

, 

基本事件的總數為8,

表示“不全被選中”這一事件,則其對立事件表示“全被選中”這一事件,由于 2個基本事件由對立事件的概率公式得.

 

查看答案和解析>>

同步練習冊答案