8.方程sin2x+cosx+k=0有解,則實(shí)數(shù)k的取值范圍為( 。
A.$-1≤k≤\frac{5}{4}$B.$-\frac{5}{4}≤k≤1$C.$0≤k≤\frac{5}{4}$D.$-\frac{5}{4}≤k≤0$

分析 由題意可得k=${(cosx-\frac{1}{2})}^{2}$-$\frac{5}{4}$,再利用余弦函數(shù)的值域,二次函數(shù)的性質(zhì),求得k的范圍.

解答 解:∵方程sin2x+cosx+k=0有解,可得k=-sin2x-cosx=cos2x-1-cosx=${(cosx-\frac{1}{2})}^{2}$-$\frac{5}{4}$,
故當(dāng)cosx=-1時(shí),k取得最大值為1;當(dāng)cosx=$\frac{1}{2}$時(shí),k取得最小值為-$\frac{5}{4}$,
故-$\frac{5}{4}$≤k≤1,
故選:B.

點(diǎn)評(píng) 本題主要考查余弦函數(shù)的值域,二次函數(shù)的性質(zhì),屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.(1)計(jì)算:$\frac{{5{x^{-\frac{2}{3}}}{y^{\frac{1}{2}}}}}{{({-\frac{1}{4}{x^{-1}}{y^{\frac{1}{2}}}})({-\frac{5}{6}{x^{\frac{1}{2}}}{y^{-\frac{1}{6}}}})}}$;
(2)已知log53=a,log52=b,用a,b表示log2512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知tan(π-α)=-3,
(1)求tanα的值.
(2)求$\frac{{sin({π-α})-cos({π+α})-sin({2π-α})+cos({-α})}}{{sin({\frac{π}{2}-α})+cos({\frac{3π}{2}-α})}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.不等式$|{x-2}|+\frac{1}{x-1}>x-2+\frac{1}{x-1}$的解集是{x|x<1或1<x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.雙曲線(xiàn)$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的實(shí)軸長(zhǎng)等于8,虛軸長(zhǎng)等于6,離心率是$\frac{5}{4}$,焦點(diǎn)坐標(biāo)是(±5,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知雙曲線(xiàn)$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,a>0,b>0$的離心率e=2,左,右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在雙曲線(xiàn)的右支上,則$\frac{{|P{F_1}|}}{{|P{F_2}|}}$的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在△ABC中,a2+b2=6abcosC且sin2C=2sinAsinB,則角C的大小為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知數(shù)列{an}滿(mǎn)足a1=3,an-1+an+an+1=6(n≥2),Sn=a1+a2+…+an,則S10=21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且滿(mǎn)足$\frac{\sqrt{3}c}{cosC}$=$\frac{a}{cos(\frac{3π}{2}+A)}$.
(I)求C的值;
(II)若$\frac{c}{a}$=2,b=4$\sqrt{3}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案