設(shè)A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸兩端點(diǎn),P是橢圓上的一點(diǎn),∠PAB=α,∠PBA=β,∠BPA=γ,c、e分別是橢圓的半焦距、離心率.求:
(1)|PA|;
(2)tanα•tanβ;
(3)S△PAB
考點(diǎn):橢圓的簡(jiǎn)單性質(zhì)
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(1)由正弦定理可得|PA|;
(2)設(shè)P(x,y),則tanα•tanβ=
y
x+a
y
a-x
=
y2
a2-x2
,可得結(jié)論;
(3)S△PAB=
1
2
×2a×
2asinβ
sinγ
×sinα,可得結(jié)論.
解答: 解:(1)由正弦定理可得|PA|=
2asinβ
sinγ
;
(2)設(shè)P(x,y),則利用橢圓的定義可得tanα•tanβ=
y
x+a
y
a-x
=
y2
a2-x2
=
b2
a2
;
(3)由三角形的面積公式可得S△PAB=
1
2
×2a×
2asinβ
sinγ
×sinα=
a2sinαsinβ
sinγ
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì),考查正弦定理,考查三角形面積的計(jì)算,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)、g(x)滿足f(x)=axg(x),f′(x)g(x)<f(x)g′(x),其中g(shù)(x)≠0且
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,在有窮數(shù)列{
f(n)
g(n)
}(n=1,2,3,…,10)中任取前k項(xiàng)相加,則前k項(xiàng)和大于
63
64
的概率是(  )
A、
1
5
B、
3
5
C、
4
5
D、
2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:?x0∈R,(m+1)•(x02+1)≤0,命題q:?x∈R,x2+mx+1>0恒成立.若p∧q為假命題,則實(shí)數(shù)m的取值范圍為(  )
A、m≥2
B、m≤-2或m>-1
C、m≤-2或m≥2
D、-1<m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓x2+y2-4x-5=0的弦AB的中點(diǎn)為P(3,1),則直線AB的方程為( 。
A、x+y-4=0
B、x+y-5=0
C、x-y+4=0
D、x-y+5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|y=
-x2+10x-9
},集合B={y|y=log3x,x∈A},則A∩(∁UB)=( 。
A、[1,2]
B、[1,3]
C、(2,9]
D、(3,9]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)2的正三角形,側(cè)棱與底面垂直,且長(zhǎng)為
3
,D是AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求點(diǎn)A到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求使函數(shù)y=
x2+ax-2
x2-x+1
的值域?yàn)椋?∞,2)的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知扇形的圓心角為90°,弧長(zhǎng)為l,求此扇形內(nèi)切圓的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解關(guān)于x的不等式:x2-5|x|+6<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案