以下四個(gè)關(guān)于圓錐曲線的命題中:

①設(shè)A、B為兩個(gè)定點(diǎn),k為正常數(shù),,則動(dòng)點(diǎn)P的軌跡為橢圓;

②雙曲線與橢圓有相同的焦點(diǎn);

③方程的兩根可分別作為橢圓和雙曲線的離心率;

④已知點(diǎn)P(x,y)的坐標(biāo)滿足方程,則點(diǎn)P的軌跡是一條直線.

其中真命題的序號(hào)為        _______

 

【答案】

②③④

【解析】對(duì)于①,只要當(dāng)k>|AB|時(shí),點(diǎn)P的軌跡才為橢圓,錯(cuò);對(duì)于②兩個(gè)曲線有相同的焦點(diǎn),正確;對(duì)于③由于此方程的兩根分別為,小根可作橢圓離心率,大根可作雙曲線的離心率,正確;對(duì)于④對(duì)原方程的結(jié)構(gòu)進(jìn)行變形,這個(gè)方程表示的幾何意義為動(dòng)點(diǎn)P(x,y)到點(diǎn)(1,3)的距離等于到直線3x+4y-15=0的距離,由于點(diǎn)(1,3)在直線3x+4y-15=0,所以點(diǎn)P的軌跡是過(guò)點(diǎn)(1,3)且與直線3x+4y-15=0垂直的一條直線,正確.故正確的有②③④.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②設(shè)定圓C上一定點(diǎn)A作圓的動(dòng)點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
OA
+
OB
),則動(dòng)點(diǎn)P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
25
-
y2
9
=1與橢圓
x2
35
+y2=1有相同的焦點(diǎn).
其中真命題的序號(hào)為
 
(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②以定點(diǎn)A為焦點(diǎn),定直線l為準(zhǔn)線的橢圓(A不在l上)有無(wú)數(shù)多個(gè);
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④過(guò)原點(diǎn)O任做一直線,若與拋物線y2=3x,y2=7x分別交于A、B兩點(diǎn),則
OA
OB
為定值.
其中真命題的序號(hào)為
 
(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為正常數(shù),|
PA
|+|
PB
|=k
,則動(dòng)點(diǎn)P的軌跡為橢圓;
②雙曲線
x2
25
-
y2
9
=1
與橢圓
x2
35
+y2=1
有相同的焦點(diǎn);
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率,則0<a<3;
④和定點(diǎn)A(5,0)及定直線l:x=
25
4
的距離之比為
5
4
的點(diǎn)的軌跡方程為
x2
16
-
y2
9
=1

其中真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),|
PA
|-|
PB
|=k
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②過(guò)定圓C上一定點(diǎn)A作圓的動(dòng)點(diǎn)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
(
OA
+
OB
)
,則動(dòng)點(diǎn)P的軌跡為橢圓;
③方程2x2-5x+2=0的兩根可分別作為橢圓和雙曲線的離心率;
④雙曲線
x2
35
-y2=1
和橢圓
x2
25
+
y2
9
=1
有相同的焦點(diǎn).
其中真命題的序號(hào)為
(寫(xiě)出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線
x2
16
-
y2
9
=1
與橢圓
x2
49
+
y2
24
=1
有相同的焦點(diǎn);
②在平面內(nèi),設(shè)A、B為兩個(gè)定點(diǎn),P為動(dòng)點(diǎn),且|PA|+|PB|=k,其中常數(shù)k為正實(shí)數(shù),則動(dòng)點(diǎn)P的軌跡為橢圓;
③方程2x2-3x+1=0的兩根可分別作為橢圓和雙曲線的離心率;
④過(guò)雙曲線x2-
y2
2
=1
的右焦點(diǎn)F作直線l交雙曲線于A、B兩點(diǎn),若|AB|=4,則這樣的直線l有且僅有3條.
其中真命題的序號(hào)為
①④
①④
(寫(xiě)出所有真命題的序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案