4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(a+3)x-5,x≤1}\\{\frac{2a}{x},x>1}\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么a的取值范圍是[-2,0).

分析 根據(jù)一次函數(shù)以及反比例函數(shù)的性質結合函數(shù)f(x)的單調性得到關于a的不等式組,解出即可.

解答 解:依題意得:$\left\{\begin{array}{l}{a+3>0}\\{2a<0}\end{array}\right.$,
解得-3<a<0.
又當x≤1時,(a+3)x-5≤a-2,
當x>1時,$\frac{2a}{x}$>2a
因為f(x)在R上單調遞增,所以a-2≤2a,即a≥-2
綜上可得,a的取值范圍是-2≤a<0.
故答案為:[-2,0).

點評 本題考查了一次函數(shù)以及反比例函數(shù)的性質,考查函數(shù)的單調性問題,是一道基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

14.直線x-my-8=0與拋物線y2=8x交于A、B兩點,O為坐標原點,則△OAB面積的取值范圍是[64,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.為了解某社區(qū)居民的家庭年收入與年支出的關系,隨機調查了該社區(qū)5戶家庭,得到如表統(tǒng)計數(shù)據(jù)表:
收入x(萬元)8.28.610.011.311.9
支出y(萬元)6.27.58.08.59.8
根據(jù)上表可得回歸直線方程$\stackrel{∧}{y}$=a+0.76x,據(jù)此估計,若該社區(qū)一戶家庭年支出為11.8萬元,則該家庭的年收入為15萬元.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)f(x)=asinx在點(0,0)處的切線方程為y=2x,則a=( 。
A.1B.2C.4D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.在四面體S-ABC中,AB⊥BC,AB=BC=$\sqrt{2}$,SA=SC=2,SB=$\sqrt{6}$,則該四面體外接球的表面積是( 。
A.$8\sqrt{6}π$B.$\sqrt{6}π$C.24πD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知點P在直線x+y=2上,A、B是圓x2+y2=1上的兩個動點,若∠APB的最大值是$\frac{π}{3}$,則點P的坐標是(0,2)或(2,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若y=sin2(x4),則$\frac{dy}{dx}$=4x3sin(2x4);$\frac{4vj9ugg^{2}y}{d{x}^{2}}$=12x2sin(2x4)+32x6cos(2x4);$\frac{dy}{d({x}^{2})}$=4x2sin(2x4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知${(x+1)^n}={a_0}+{a_1}(x-1)+{a_2}{(x-1)^2}+…+{a_n}{(x-1)^n}$,(其中n∈N*
(1)求a0及sn=a1+a2+…+an
(2)試比較sn與(n-2)•2n+2n2的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.設向量$\overrightarrow a$,$\overrightarrow b$滿足$|\overrightarrow a|=1$,$|\overrightarrow a+\overrightarrow b|=\sqrt{3}$,$\overrightarrow a•(\overrightarrow a+\overrightarrow b)=0$,則$|2\overrightarrow a-\overrightarrow b|$=(  )
A.2B.$2\sqrt{3}$C.4D.$4\sqrt{3}$

查看答案和解析>>

同步練習冊答案