滿足不等式a3>(-3)3的實數(shù)a的取值范圍是( 。
A、(-3,+∞)
B、(-∞,-3)
C、(3,+∞)
D、(-3,3)
考點:冪函數(shù)的單調(diào)性、奇偶性及其應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)f(x)=x3為定義在R上的增函數(shù),結(jié)合不等式a3>(-3)3,可得實數(shù)a的取值范圍.
解答: 解:∵函數(shù)f(x)=x3為定義在R上的增函數(shù),
∴若a3>(-3)3,
則a>-3,
故實數(shù)a的取值范圍是(-3,+∞),
故選:A
點評:本題考查的知識點是冪函數(shù)的單調(diào)性,其中理解函數(shù)f(x)=x3為定義在R上的增函數(shù),是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1≠0,an+1=
3
an,Sn為{an}的前n項和.記Rn=
82Sn-S2n
an+1
,則數(shù)列{Rn}的最大項為第
 
項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點P為圓x2+y2=4上的動點,則點P到直線3x-4y-30=0的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax+b
x2+1
(x∈R,a、b為實數(shù)),且曲線y=f(x)在點P(
1
3
,f(
1
3
))
處的切線l的方程是9x+10y-33=0.
(1)求實數(shù)a,b的值;
(2)現(xiàn)將切線方程改寫為y=
3
10
(11-3x),并記g(x)=
3
10
(11-3x),當(dāng)x∈[0,2]時,試比較f(x)與g(x)的大小關(guān)系;
(3)已知數(shù)列{an}滿足:0<an<2(n∈N*),且a1+a2+…+a2014=
2014
3
,若不等式f(a1)+f(a2)+…+f(a2014)≤x-ln(x-p)+2(p-2)在x∈(p,+∞)時恒成立,求實數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等差數(shù)列,且a1=1,S5=25,則{an}的通項公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
b
滿足|
a
|=1,|
b
|=3
2
,|2
a
-
b
|=
10
,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1.
(1)求a、b的值.
(2)若不等式
g(x)
x
-k≥0在x∈[1,2]上有解,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a-
2
3
(a>0)化為根式
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b是正實數(shù),A是a,b的等差中項,G是a,b等比中項,則( 。
A、ab≤AG
B、ab≥AG
C、ab≤|AG|
D、ab>AG

查看答案和解析>>

同步練習(xí)冊答案