【題目】某算法的程序框圖如圖所示,如果輸出的結(jié)果為5,57,則判斷框內(nèi)應(yīng)為(

A.k≤6?
B.k≤5?
C.k>5?
D.k>4?

【答案】D
【解析】解:模擬執(zhí)行程序,可得:
S=0,k=1
S=1,
不滿足條件,執(zhí)行循環(huán)體,可得:k=2,S=4,
不滿足條件,執(zhí)行循環(huán)體,可得:k=3,S=11,
不滿足條件,執(zhí)行循環(huán)體,可得:k=4,S=26,
不滿足條件,執(zhí)行循環(huán)體,可得:k=5,S=57,
滿足條件,由題意,此時(shí)應(yīng)該結(jié)束循環(huán)體并輸出k,S的值為5,57,
所以判斷框應(yīng)該填入的條件為:k>4?
故選:D.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識(shí),掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)y=f(x)的定義域?yàn)镽,并且滿足f(x+y)=f(x)+f(y), ,且當(dāng)x>0時(shí),f(x)>0.
(1)求f(0)的值;
(2)判斷函數(shù)的奇偶性;
(3)如果f(x)+f(2+x)<2,求x取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知隨機(jī)變量X服從正態(tài)分布N(μ,σ2),且P(μ﹣2σ<X<μ+2σ)=0.954 4,P(μ﹣σ<X<μ+σ)=0.6826.若μ=4,σ=1,則P(5<X<6)=(
A.0.1359
B.0.1358
C.0.2718
D.0.2716

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為,其中為參數(shù), ,再以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,其中, ,直線與曲線交于兩點(diǎn).

(1)求的值;

(2)已知點(diǎn),且,求直線的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線l1:ax﹣y+b=0,l2:bx+y﹣a=0(ab≠0)的圖象只可能是圖中的(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐V﹣ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC= ,O,M分別為AB,VA的中點(diǎn).

(1)求證:VB∥平面MOC.
(2)求證:平面MOC⊥平面VAB.
(3)求二面角C﹣VB﹣A的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)甲、乙兩名籃球運(yùn)動(dòng)員分別在100場(chǎng)比賽中的得分情況進(jìn)行統(tǒng)計(jì),做出甲的得分頻率分布直方圖如圖所示,列出乙的得分統(tǒng)計(jì)表如表所示:

分值

[0,10)

[10,20)

[20,30)

[30,40)

場(chǎng)數(shù)

10

20

40

30


(1)估計(jì)甲在一場(chǎng)比賽中得分大于等于20分的概率.
(2)判斷甲、乙兩名運(yùn)動(dòng)員哪個(gè)成績(jī)更穩(wěn)定.(結(jié)論不要求證明)
(3)試?yán)眉椎念l率分布直方圖估計(jì)甲每場(chǎng)比賽的平均得分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax3+bx2的圖象經(jīng)過點(diǎn)M(1,4),曲線在點(diǎn)M處的切線恰好與直線x+9y=0垂直.
(1)求實(shí)數(shù)a,b的值;
(2)若函數(shù)f(x)在區(qū)間[m,m+1]上單調(diào)遞增,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在(﹣1,1)上的奇函數(shù) 是增函數(shù),且
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(t﹣1)+f(2t)<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案