已知函數(shù)f(x)=alnx-bx2圖象上一點(diǎn)P(2,f(2))處的切線方程為y=-3x+2ln2+2.
(Ⅰ)求a,b的值;
(Ⅱ)若方程f(x)+m=0在內(nèi)有兩個(gè)不等實(shí)根,求m的取值范圍(其中e為自然對(duì)數(shù)的底數(shù));
(Ⅲ)令g(x)=f(x)-kx,若g(x)的圖象與x軸交于A(x1,0),B(x2,0)(其中x1<x2),AB的中點(diǎn)為C(x,0),求證:g(x)在x處的導(dǎo)數(shù)g′(x)≠0.
【答案】分析:(Ⅰ)只需要利用導(dǎo)數(shù)的幾何意義即可獲得兩個(gè)方程解得兩個(gè)未知數(shù);
(Ⅱ)先要利用導(dǎo)數(shù)研究好函數(shù)h(x)=f(x)+m=2lnx-x2+m,的單調(diào)性,結(jié)合單調(diào)性及在內(nèi)有兩個(gè)不等實(shí)根通過(guò)數(shù)形結(jié)合易知m滿足的關(guān)系從而問(wèn)題獲得解答;
(Ⅲ)用反證法現(xiàn)將問(wèn)題轉(zhuǎn)化為有關(guān)方程根的形式,在通過(guò)研究函數(shù)的單調(diào)性進(jìn)而通過(guò)最值性找到矛盾即可獲得解答.
解答:解:(Ⅰ)f′(x)=-2bx,,f(2)=aln2-4b.
,且aln2-4b=-6+2ln2+2.
解得a=2,b=1.
(Ⅱ)f(x)=2lnx-x2,令h(x)=f(x)+m=2lnx-x2+m,
,
令h′(x)=0,得x=1(x=-1舍去).
內(nèi),
當(dāng)時(shí),h′(x)>0,
∴h(x)是增函數(shù);
當(dāng)x∈[1,e]時(shí),h′(x)<0,
∴h(x)是減函數(shù),
則方程h(x)=0在內(nèi)有兩個(gè)不等實(shí)根的充要條件是:


(Ⅲ)g(x)=2lnx-x2-kx,
假設(shè)結(jié)論成立,則有:

①-②,得

由④得,

,即.⑤
(0<t<1),
>0.
∴u(t)在0<t<1上增函數(shù),
∴u(t)<u(1)=0,
∴⑤式不成立,與假設(shè)矛盾.
∴g'(x)≠0.
點(diǎn)評(píng):本題考查的是函數(shù)與方程以及導(dǎo)數(shù)知識(shí)的綜合應(yīng)用問(wèn)題.在解答的過(guò)程當(dāng)中充分體現(xiàn)了函數(shù)與方程的思想、數(shù)形結(jié)合的思想、問(wèn)題轉(zhuǎn)化的思想以及反證法.值得同學(xué)們體會(huì)反思.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過(guò)原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過(guò)點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案