直線ax+by=1與圓x2+y2=1相交于不同的A,B兩點(其中a,b是實數(shù)),且數(shù)學(xué)公式(O是坐標(biāo)原點),則點P(a,b)與點(0,數(shù)學(xué)公式)距離的取值范圍為


  1. A.
    (1,+∞)
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
D
分析:設(shè)出點A、B的坐標(biāo),將直線與圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系即可表示出判別式△與,即可得出a、b滿足的條件,進而利用兩點間的距離公式即可得出.
解答:當(dāng)b≠0時,設(shè)A(x1,y1),B(x2,y2),聯(lián)立,消去y得到(a2+b2)x2-2ax+1-b2=0,
∵直線ax+by=1與圓x2+y2=1相交于不同的A,B兩點,∴△=4a2-4(a2+b2)(1-b2)>0,化為a2+b2>1.(*)
由根與系數(shù)的關(guān)系得
>0,∴x1x2+y1y2>0,
又ax1+by1=1,ax2+by2=1,
∴b2y1y2=(1-ax1)(1-ax20,
∴(b2+a2)x1x2-a(x1+x2)+1>0,
代入得,化為a2+b2<2.(**)
聯(lián)立(*)(**)得,當(dāng)b=0時也成立.
畫出圖象:
當(dāng)P分別。0,1),(0,-)時,|QP|取得最小值與最大值,
∴|QP|滿足
因此點P(a,b)與點(0,)距離的取值范圍為
故選D.
點評:熟練掌握直線與圓相交問題的解題模式、判別式、數(shù)量積的計算及兩點間的距離公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)已知點M(a,b)在圓O:x2+y2=1外,則直線ax+by=1與圓O的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•溫州一模)設(shè)A(1,-1),B(0,1),若直線ax+by=1與線AB(包括端點)有公共點,則a2+b2的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)設(shè)點A(1,2),B(2,1)如果直線ax+by=1與線段AB有一個公共點,那么a2+b2(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線ax+by=1與圓x2+y2=1相切于第一象限,則實數(shù)
1
a
+
1
b
的最小值是
2
2
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•新疆模擬)已知直線ax+by=1與圓x2+y2=4有交點,且交點為“整點”,則滿足條件的有序?qū)崝?shù)對(a,b)的個數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊答案