已知圓C:(x-3)2+(y-4)2=4,直線l1過定點A(1,0).
(Ⅰ)若l1與圓相切,求l1的方程;
(Ⅱ)若l1與圓相交于P,Q兩點,線段PQ的中點為M,又l1與l2:x+2y+2=0的交點為N,求證:AM•AN為定值.
分析:(I)由直線l1與圓相切,則圓心到直線的距離等于半徑,求得直線方程,注意分類討論;
(II)分別聯(lián)立相應方程,求得M,N的坐標,再求AM•AN.
解答:解:(Ⅰ)①若直線l1的斜率不存在,即直線x=1,符合題意.(2分)
②若直線l1斜率存在,設直線l1為y=k(x-1),即kx-y-k=0.
由題意知,圓心(3,4)到已知直線l1的距離等于半徑2,
|3k-4-k|
 
k2+1
=2
解之得k=
3
4

所求直線方程是x=1,3x-4y-3=0.(5分)
(Ⅱ)直線與圓相交,斜率必定存在,且不為0,可設直線方程為kx-y-k=0
x+2y+2=0
kx-y-k=0
N(
2k-2
2k+1
,-
3k
2k+1
)
又直線CM與l1垂直,
y=kx-k
y-4=-
1
k
(x-3)
M(
k2+4k+3
1+k2
4k2+2k
1+k2
)


∴AM*AN=
2 |2k+1|
1+k2
1+k2
3
1+k2
|2k+1|
=6
為定值.(10分)
點評:本題主要考查直線與圓的位置關系以及直線與直線的交點和兩點間的距離公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知圓C:(x-3)2+(y-4)2=4,
(Ⅰ)若直線l1過定點A(1,0),且與圓C相切,求l1的方程;
(Ⅱ)若圓D的半徑為3,圓心在直線l2:x+y-2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,
(1)直線l1過定點A (1,0).若l1與圓C相切,求l1的方程;
(2)直線l2過B(2,3)與圓C相交于P,Q兩點,求線段PQ的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x-3)2+(y-4)2=4,
(Ⅰ)若a=y-x,求a的最大值和最小值;
(Ⅱ)若圓D的半徑為3,圓心在直線L:x+y-2=0上,且與圓C外切,求圓D的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C:(x+3)2+(y-4)2=4.
(1)若直線l1過點A(-1,0),且與圓C相切,求直線l1的方程;
(2)若圓D的半徑為4,圓心D在直線l2:2x+y-2=0上,且與圓C內(nèi)切,求圓D的方程.

查看答案和解析>>

同步練習冊答案