如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分別是BC,AP的中點(diǎn).
(1)求異面直線AC與ED所成的角的大。
(2)求△PDE繞直線PA旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體的體積.

解(1)解法一:取AB中點(diǎn)F,連接DF,EF,則AC∥DF,
所以∠EDF就是異面直線AC與PB所成的角.
由已知,,∵AC⊥EF,∴DF⊥EF.
在Rt△EFD中,
所以異面直線AC與ED所成的角為
解法二:建立空間直角坐標(biāo)系,,E(0,0,1),
PCDE,
所以異面直線AC與ED所成的角為
(2)△PDE繞直線PA旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體,是以AD
為底面半徑、AP為高的圓錐中挖去一個(gè)以AD為底面
半徑、AE為高的小圓錐,體積
分析:(1)解法一:欲求異面直線所成角,只需平移異面直線中的一條,是它們成為相交直線,則相交直線所成角就是異面直線所成角,再放入三角形中,通過解三角形求出該角.本題中取AB中點(diǎn)F,連接DF,EF,則AC∥DF,∠EDF就是異面直線AC與PB所成的角.再放入Rt△EFD中來求.
解法二:利用空間向量來解,先建立空間直角坐標(biāo)系,把異面直線AC與ED所成的角轉(zhuǎn)化為向量,的夾角,再利用向量的夾角公式計(jì)算即可.
(2)△PDE繞直線PA旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體,是以AD為底面半徑、AP為高的圓錐中挖去一個(gè)以AD為底面半徑、AE為高的小圓錐,所以只需求出兩個(gè)圓錐的體積,再相減即可.
點(diǎn)評(píng):本題主要考查了異面直線所成角的求法,以及組合體體積的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•丹東模擬)如圖,已知PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=
3
,F(xiàn)是PB中點(diǎn),點(diǎn)E在BC邊上.
(Ⅰ)求三棱錐E-PAD的體積;
(Ⅱ)求證:AF⊥PE;
(Ⅲ)若EF∥平面PAC,試確定E點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求證:PC⊥平面ADE;
(2)求點(diǎn)D到平面ABC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•寶雞模擬)如圖,已知PA⊥平面ABC,且PA=
2
,等腰直角三角形ABC中,AB=BC=1,AB⊥BC,AD⊥PB于D,AE⊥PC于E.
(1)求證:PC⊥平面ADE;
(2)求直線AB與平面ADE所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐匯區(qū)一模)如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D,E分別是BC,AP的中點(diǎn).
(1)求異面直線AC與ED所成的角的大;
(2)求△PDE繞直線PA旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐匯區(qū)一模)如圖,已知PA⊥平面ABC,AC⊥AB,AP=BC=2,∠CBA=30°,D是AB的中點(diǎn).
(1)求PD與平面PAC所成的角的大。
(2)求△PDB繞直線PA旋轉(zhuǎn)一周所構(gòu)成的旋轉(zhuǎn)體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案