8.已知菱形ABCD與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1相切,則菱形ABCD面積的最小值為( 。
A.8$\sqrt{2}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.8$\sqrt{3}$

分析 設(shè)菱形的邊在第一象限所在直線的方程為:$\frac{x}{m}+\frac{y}{n}$=1,化為nx+my=mn(m,n>0).與橢圓方程聯(lián)立化為(3m2+4n2)x2-8mn2x+4n2m2-12m2=0,令△=0,即可得出.

解答 解:設(shè)菱形的邊在第一象限所在直線的方程為:$\frac{x}{m}+\frac{y}{n}$=1,化為nx+my=mn(m,n>0).
聯(lián)立$\left\{\begin{array}{l}{nx+my=mn}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,
化為(3m2+4n2)x2-8mn2x+4n2m2-12m2=0,
令△=64m2n4-16(3m2+4n2)(n2m2-3m2)=0,
化為m2n2=3m2+4n2≥2$\sqrt{3×4}$mn,當(dāng)且僅當(dāng)$\sqrt{3}m$=2n=$2\sqrt{6}$時取“=”.
解得mn≥4$\sqrt{3}$,
∴S菱形=$\frac{1}{2}×2m×2n$=2mn≥8$\sqrt{3}$.
∴菱形ABCD面積的最小值為8$\sqrt{3}$.
故選:D.

點(diǎn)評 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相切問題、菱形的面積計算公式、基本不等式的性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若雙曲線$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一點(diǎn)P到右焦點(diǎn)的距離為2,求點(diǎn)P到雙曲線的漸近線的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知三角形ABC的三個頂點(diǎn)A(1,1),B(4,0),C(3,2),求三角形BC邊上的高線和中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}+x,x<0\\{x^2}-x,x>0\end{array}$,
(1)作出函數(shù)的圖象;并寫出單調(diào)區(qū)間.
(2)求函數(shù)的最小值,并求出對應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.對于函數(shù)f(x)與g(x),如果對任意x∈D,都有|f(x)-g(x)|≤1成立,則稱f(x)與g(x)是區(qū)間D上的“親密函數(shù)”.設(shè)函數(shù)f(x)=log4(x-m),g(x)=log4$\frac{1}{x-3m}$,區(qū)間D為[m+2,m+3].
(1)若f(x)與g(x)在區(qū)間[m+2,m+3]上都有意義,求實數(shù)m的取值范圍.
(2)若f(x)與g(x)是區(qū)間[m+2,m+3]上的“親密函數(shù)”,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.不論實數(shù)a與b為何值時,直線l:(a+2b)x+(a+b)y-3a-4b=0恒過定點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列各圖中,可表示函數(shù)y=f(x)的圖象的只可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某市環(huán)保研究所對市中心每天環(huán)境污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合污染指數(shù)f(x)與時間x(小時)的關(guān)系為$f(x)=|{\frac{4}{3}sin(\frac{π}{36}x)-a}|+{a^{\frac{1}{2}}}$,x∈[0,24],其中a是與氣象有關(guān)的參數(shù),且$a∈[0,\frac{3}{4}]$,若用每天f(x)的最大值為當(dāng)天的綜合污染指數(shù),記作M(a)
(1)令$t=\frac{4}{3}sin(\frac{π}{36}x)$,x∈[0,24],試求t的取值范圍
(2)試求函數(shù)M(a)
(3)市政府規(guī)定每天的綜合污染指數(shù)不得超過2,試問目前該市的污染指數(shù)是否超標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=lg\frac{x+1}{x-1}+lg(x-1)+lg(a-x)$ (a>1).
(I)求函數(shù)定義域并判斷是否存在一個實數(shù)a,使得函數(shù)y=f(x)的圖象關(guān)于某一條垂直于x軸的直線對稱?若存在,求出這個實數(shù)a;若不存在,說明理由.
(II)當(dāng)f(x)的最大值為2時,求實數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊答案