數(shù)列{an}的前n項(xiàng)之和Sn=n2+3n+1,則a1+a3+a5等于
 
考點(diǎn):數(shù)列遞推式
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:利用Sn=n2+3n+1,分別計(jì)算a1、a3、a5,即可求a1+a3+a5
解答: 解:n=1時(shí),a1=S1=5,a3=S3-S2=8,a5=S5-S4=12,
∴a1+a3+a5=5+8+12=25.
故答案為:25.
點(diǎn)評(píng):本題考查數(shù)列{an}的前n項(xiàng),考查數(shù)列的通項(xiàng),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)a、b使方程x4+ax3+bx2+ax+1=0,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ex+x-a(a∈R,e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)當(dāng)x∈[0,1]時(shí),f(x)≥0恒成立,求a的取值范圍;
(Ⅱ)函數(shù)g(x)=
f(x)
,若曲線y=cos2x上 存在點(diǎn)(x0,y0),使得g(g(y0))=y0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
=(x,3),
b
=(2,-1),若
a
b
,則|2
a
+
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(a+1,b+1),Q(1,0),線段PQ與直線2x-3y+1=0有交點(diǎn),若存在M∈R+,使得-b-a2≤M恒成立,則M的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用適當(dāng)?shù)姆?hào)填空
(1)a
 
{a,b,c};
(2)0
 
{x|x2=0};
(3)∅
 
{x∈R|x2+1=0};
(4){0,1}
 
N;
(5){0}
 
{x|x2=x};
(6){2,1}
 
{x|x2-3x+2=0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x(8-3x)
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1-2x)n關(guān)于x的展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式的系數(shù)之和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A是圓形紙片內(nèi)不同于圓心的一個(gè)點(diǎn),取圓周上一點(diǎn)B,折疊紙片使點(diǎn)B與A重合,得到一條折痕,當(dāng)點(diǎn)B取遍圓周上所有點(diǎn)時(shí),得到的所有折痕均與某條曲線相切,這條曲線是一個(gè)( 。
A、圓B、橢圓C、雙曲線D、拋物線

查看答案和解析>>

同步練習(xí)冊(cè)答案