已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SA⊥平面ABC,,AB=1,AC=2,∠BAC=60°,則球O的表面積為
( )
A.4π
B.12π
C.16π
D.64π
【答案】分析:由三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,SA⊥平面ABC,,AB=1,AC=2,∠BAC=60°,知BC=,∠ABC=90°.故△ABC截球O所得的圓O′的半徑r==1,由此能求出球O的半徑,從而能求出球O的表面積.
解答:解:如圖,三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,
∵SA⊥平面ABC,,AB=1,AC=2,∠BAC=60°,
∴BC==,
∴∠ABC=90°.
∴△ABC截球O所得的圓O′的半徑r==1,
∴球O的半徑R==2,
∴球O的表面積S=4πR2=16π.
故選C.

點(diǎn)評(píng):本題考查球的表面積的求法,合理地作出圖形,數(shù)形結(jié)合求出球半徑,是解題時(shí)要關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的各頂點(diǎn)都在一個(gè)半徑為r的球面上,球心O在AB上,SO⊥底面ABC,AC=
2
r
,則球的體積與三棱錐體積之比是(  )
A、πB、2πC、3πD、4π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長(zhǎng)為1的正三角形,SC為球O的直徑,且SC=2;則此棱錐的體積為
2
6
2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的三條側(cè)棱兩兩垂直,且SA=2,SB=SC=4,若點(diǎn)P到S、A、B、C這四點(diǎn)的距離都是同一個(gè)值,則這個(gè)值是
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•蘭州一模)已知三棱錐S-ABC的所有頂點(diǎn)都在以O(shè)為球心的球面上,△ABC是邊長(zhǎng)為1的正三角形,SC為球O的直徑,若三棱錐S-ABC的體積為
2
6
,則球O的表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱錐S-ABC的四個(gè)頂點(diǎn)在以O(shè)為球心的同一球面上,且SA=SB=SC=AB,∠ACB=90°,則當(dāng)球的表面積為400π時(shí),點(diǎn)O到平面ABC的距離為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案