【題目】已知點MN分別是橢圓C)的左頂點和上頂點,F為其右焦點,,橢圓的離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)不過原點O的直線與橢圓C相交于A,B兩點,若直線OA,ABOB的斜率成等比數(shù)列,求面積的取值范圍.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)由,結(jié)合橢圓的離心率求解即可.

(Ⅱ)直線的斜率存在且不為0.設(shè)直線,,,,聯(lián)立直線和橢圓,消去可得,,利用判別式以及韋達定理,通過,的斜率依次成等比數(shù)列,推出,求出,,且,然后求解三角形的面積的表達式,求解范圍即可.

解:(Ⅰ)設(shè)橢圓的半焦距為,由題可知,,

,,則,

,

解得,,,

所以橢圓C的方程

(Ⅱ)由題意可知,直線l的斜率存在且不為0.

故可設(shè)直線,,

聯(lián)立直線和橢圓,消去y可得,

有題意可知,,

,

,,

又直線OAAB,OB的斜率依次成等比數(shù)列,所以

,代入并整理得,

因為,,,且,

設(shè)d為點O到直線l的距離,則有,

,

所以,

所以面積的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹落實中央省市關(guān)于新型冠狀病毒肺炎疫情防控工作要求,積極應(yīng)對新型冠狀病毒疫情,切實做好2020年春季開學(xué)工作,保障校園安全穩(wěn)定,普及防控知識,確保師生生命安全和身體健康.某校開學(xué)前,組織高三年級800名學(xué)生參加了“疫情防控”網(wǎng)絡(luò)知識競賽(滿分150分).已知這800名學(xué)生的成績均不低于90分,將這800名學(xué)生的成績分組如下:第一組,第二組,第三組,第四組,第五組,第六組,得到的頻率分布直方圖如圖所示.

1)求的值并估計這800名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);

2)該校“群防群控”督查組為更好地督促高三學(xué)生的“個人防控”,準備從這800名學(xué)生中取2名學(xué)生參與督查工作,其取辦法是:先在第二組第五組第六組中用分層抽樣的方法抽取6名學(xué)生,再從這6名學(xué)生中隨機抽取2名學(xué)生.記這2名學(xué)生的競賽成績分別為.求事件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列、、滿足,

1)若數(shù)列是等比數(shù)列,試判斷數(shù)列是否為等比數(shù)列,并說明理由;

2)若恰好是一個等差數(shù)列的前項和,求證:數(shù)列是等差數(shù)列;

3)若數(shù)列是各項均為正數(shù)的等比數(shù)列,數(shù)列是等差數(shù)列,求證:數(shù)列是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】猜商品的價格游戲, 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:高了! 觀眾甲: 主持人:低了! 觀眾甲: 主持人:低了! 則此商品價格所在的區(qū)間是

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解某地網(wǎng)民瀏覽購物網(wǎng)站的情況,從該地隨機抽取100名網(wǎng)民進行調(diào)查,其中男性、女性人數(shù)分別為6040.下面是根據(jù)調(diào)查結(jié)果統(tǒng)計的數(shù)據(jù),將日均瀏覽購物網(wǎng)站時間不低于40分鐘的網(wǎng)民稱為網(wǎng)購達人,已知網(wǎng)購達人中女性人數(shù)為15人.

日均瀏覽購物網(wǎng)站時間(分鐘)

人數(shù)

2

14

24

35

20

5

1)根據(jù)已知條件完成下面的列聯(lián)表,并判斷是否有99%的把握認為是否為網(wǎng)購達人與性別有關(guān);

非網(wǎng)購達人

網(wǎng)購達人

總計

15

總計

2)從上述調(diào)查中的網(wǎng)購達人中按性別分層抽樣,抽取5人發(fā)放禮品,再從這5人中隨機選出2人作為最美網(wǎng)購達人,求這兩個最美網(wǎng)購達人中恰好為11女的概率.

參考公式:,其中

參考數(shù)據(jù):

010

005

0025

0010

0005

0001

2706

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點為拋物線,點為焦點,過點的直線交拋物線于兩點,點在拋物線上,使得的重心軸上,直線軸于點,且在點右側(cè).記的面積為.

(1)求的值及拋物線的標準方程;

(2)求的最小值及此時點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與橢圓交于不同的兩點,.

1)若線段的中點為,求直線的方程;

2)若的斜率為,且過橢圓的左焦點的垂直平分線與軸交于點,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,經(jīng)過左焦點的最短弦長為3,離心率為

1)求橢圓的標準方程;

2)過的直線與軸正半軸交于點,與橢圓交于點軸,過的另一直線與橢圓交于兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的部分圖象如圖所示,若將函數(shù)的圖象縱坐標不變,橫坐標縮短到原來的,再向右平移個單位長度,得到函數(shù)的圖象,則下列命題正確的是( ).

A.函數(shù)的解析式為

B.函數(shù)的解析式為

C.函數(shù)圖象的一條對稱軸是直線

D.函數(shù)在區(qū)間上單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊答案