【題目】設數(shù)列{an}的前n項和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值,并用an1表示an
(2)求數(shù)列{an}的通項公式;
(3)設Tn= + + +…+ ,求證:Tn

【答案】
(1)解:數(shù)列{an}的前n項和為Sn,且2Sn=(n+2)an﹣1(n∈N*).

令n=1時,2S1=3a1﹣1,

解得:a1=1

由于:2Sn=(n+2)an﹣1①

所以:2Sn+1=(n+3)an+1﹣1②

②﹣①得:2an+1=(n+3)an+1﹣(n+2)an

整理得: ,

則:

即:


(2)解:由于: ,

則: ,…, ,

利用疊乘法把上面的(n﹣1)個式子相乘得:

即:

當n=1時,a1=1符合上式,

所以數(shù)列的通項公式是:


(3)證明:由于: ,

所以: ,

則: =2( ),

所以: …+

=

=2( =


【解析】(1)首先利用賦值法求出數(shù)列的首項,進一步建立數(shù)列an1和an間的聯(lián)系;(2)利用疊乘法求出數(shù)列的通項公式.(3)利用裂項相消法求出數(shù)列的和,進一步利用放縮法求出結果.
【考點精析】本題主要考查了數(shù)列的前n項和和數(shù)列的通項公式的相關知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令
(Ⅰ)證明:數(shù)列{bn}是等差數(shù)列;
(Ⅱ)求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A,B,C在圓x2+y2=1上運動,且AB⊥BC,若點P的坐標為 ,則 的取值范圍為(
A.[8,10]
B.[9,11]
C.[8,11]
D.[9,12]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=2x2+bx+c,不等式f(x)<0的解集為(0,5).
(1)求b,c的值;
(2)若對任意x∈[﹣1,1],不等式f(x)+t≤2恒成立,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(常數(shù)).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若曲線與直線相切,證明: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“微信運動”已成為當下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

(1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

(2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關?

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),設關于的方程個不同的實數(shù)解,則的所有可能的值為( )

A. 3 B. 1或3 C. 4或6 D. 3或4或6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖, 是圓柱的上、下底面圓的直徑, 是邊長為2的正方形, 是底面圓周上不同于兩點的一點, .

(1)求證: 平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各函數(shù)在其定義域中,既是奇函數(shù),又是增函數(shù)的是(
A.y=x+1
B.y=﹣x3
C.y=﹣
D.y=x|x|

查看答案和解析>>

同步練習冊答案