【題目】對(duì)于函數(shù)f(x)=sin(2x+ ),下列命題: ①函數(shù)圖象關(guān)于直線x=﹣ 對(duì)稱(chēng);
②函數(shù)圖象關(guān)于點(diǎn)( ,0)對(duì)稱(chēng);
③函數(shù)圖象可看作是把y=sin2x的圖象向左平移個(gè) 單位而得到;
④函數(shù)圖象可看作是把y=sin(x+ )的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍(縱坐標(biāo)不變)而得到;其中正確的命題是 .
【答案】②④
【解析】解:當(dāng)x=﹣ 時(shí),函數(shù)f(x)=sin(2x+ )=0,不是最值,故函數(shù)圖象不關(guān)于直線x=﹣ 對(duì)稱(chēng),故①不正確. 因?yàn)楫?dāng)x= 時(shí),函數(shù)f(x)=sin(2x+ )=0,故點(diǎn)( ,0)是函數(shù)圖象與x軸的交點(diǎn),故函數(shù)圖象關(guān)于點(diǎn)( ,0)對(duì)稱(chēng),故②正確.
把y=sin2x的圖象向左平移個(gè) 單位而得到 y=sin2(x+ )=sin(2x+ ),故③不正確.
把y=sin(x+ )的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍得到 y=sin(2x+ ),故④正確.
故答案為 ②④.
根據(jù)正弦函數(shù)的對(duì)稱(chēng)軸過(guò)頂點(diǎn)得①不正確.
根據(jù)點(diǎn)( ,0)是函數(shù)圖象與x軸的交點(diǎn),故函數(shù)圖象關(guān)于點(diǎn)( ,0)對(duì)稱(chēng),故②正確.
由于把y=sin2x的圖象向左平移個(gè) 單位而得到y(tǒng)=sin(2x+ ),故③不正確.
把y=sin(x+ )的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 倍得到 y=sin(2x+ ),故④正確.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C的方程為+=1,A、B為橢圓C的左、右頂點(diǎn),P為橢圓C上不同于A、B的動(dòng)點(diǎn),直線x=4與直線PA、PB分別交于M、N兩點(diǎn);若D(7,0),則過(guò)D、M、N三點(diǎn)的圓必過(guò)x軸上不同于點(diǎn)D的定點(diǎn),其坐標(biāo)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求的取值范圍.
(2)設(shè)的兩個(gè)極值點(diǎn)為,證明
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 中, 是的中點(diǎn), ,將沿折起,使點(diǎn)到達(dá)點(diǎn).
(1)求證: 平面;
(2)當(dāng)三棱錐的體積最大時(shí),試問(wèn)在線段上是否存在一點(diǎn),使與平面所成的角的正弦值為?若存在,求出點(diǎn)的位置;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)慶期間,高速公路堵車(chē)現(xiàn)象經(jīng)常發(fā)生.某調(diào)查公司為了了解車(chē)速,在臨川收費(fèi)站從7座以下小型汽車(chē)中按進(jìn)收費(fèi)站的先后順序,每間隔50輛就抽取一輛的抽樣方法抽取40輛汽車(chē)進(jìn)行抽樣調(diào)查,將他們?cè)谀扯胃咚俟返能?chē)速)分成六段后,得到如圖的頻率分布直方圖.
(1)求這40輛小型汽車(chē)車(chē)速的眾數(shù)和中位數(shù)的估計(jì)值;
(2)若從這40輛車(chē)速在的小型汽車(chē)中任意抽取2輛,求抽出的2輛車(chē)車(chē)速都在的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利用獨(dú)立性檢驗(yàn)的方法調(diào)查大學(xué)生的性別與愛(ài)好某項(xiàng)運(yùn)動(dòng)是否有關(guān),通過(guò)隨機(jī)詢(xún)問(wèn)110名不同的大學(xué)生是否愛(ài)好某項(xiàng)運(yùn)動(dòng),利用列聯(lián)表,由計(jì)算可得
P(K2>k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.有99.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
B.有99.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
C.在犯錯(cuò)誤的概率不超過(guò)0.05%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過(guò)0.05%的前提下,認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,Sn=2an+1,則Sn=( ).
A. 2n-1 B. n-1 C. n-1 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率都為50%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員四次投籃恰有兩次命中的概率:先由計(jì)算器算出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0,1,2,3,4表示命中,5,6,7,8,9表示不命中;再以每四個(gè)隨機(jī)數(shù)為一組,代表四次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù): 9075 9660 1918 9257 2716 9325 8121 4589 5690 6832
4315 2573 3937 9279 5563 4882 7358 1135 1587 4989
據(jù)此估計(jì),該運(yùn)動(dòng)員四次投籃恰有兩次命中的概率為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com