11.當(dāng)m為何值時,直線l1:(3m+1)x+(2-m)y-1=0與直線l2:(m-2)x+(m+3)y+2=0相互垂直?

分析 由兩直線垂直得x,y的系數(shù)積的和為0,由此能求出結(jié)果.

解答 解:∵直線l1:(3m+1)x+(2-m)y-1=0與直線l2:(m-2)x+(m+3)y+2=0相互垂直,
∴(3m+1)(m-2)+(2-m)(m+3)=0,
解得m=1或m=2.
∴m=1或m=2時,直線l1:(3m+1)x+(2-m)y-1=0與直線l2:(m-2)x+(m+3)y+2=0相互垂直.

點評 本題考查使兩直線垂直的實數(shù)值的求法,是基礎(chǔ)題,解題時要認真審題,注意兩直線垂直的性質(zhì)的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.等差數(shù)列{an}中,S5=28,S10=36,則S15等于24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若點A(1,3)關(guān)于直線y=kx+b的對稱點B(-2,1),則k+b=$\frac{11}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.判斷函數(shù)y=$\frac{{a}^{x}-1}{{a}^{x}+1}+ln\frac{{a}^{x}-1}{{a}^{x}+1}$的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=cos($\frac{π}{3}$+x)•cos($\frac{π}{3}$-x),g(x)=$\frac{1}{2}$sin2x-$\frac{1}{4}$.
(1)化簡f(x);
(2)求函數(shù)f(x)的最小正周期;
(3)求函數(shù)h(x)=f(x)-g(x)的最大值,并求使h(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=$\frac{1}{\sqrt{lo{g}_{3}(4x-3)}}$的定義域為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在等比數(shù)列{an}中,a1a7=1,那么a4等于±1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在邊長為a的正方形SG1G2G3中,E,F(xiàn)分別是G1G2,G2G3的中點,現(xiàn)沿SE,SF及EF把這個正方形折成一個三棱錐,使G1,G2,G3三點重合,重合點記為G,則點G到平面SEF的距離為$\frac{a}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當(dāng)x∈(0,1]時,f(x)=1-2|x-$\frac{1}{2}$|,則函數(shù)g(x)=f[f(x)]-$\frac{4}{3}$x在區(qū)間[-2,2]內(nèi)不同的零點個數(shù)是( 。
A.5B.6C.7D.9

查看答案和解析>>

同步練習(xí)冊答案