(2012•河西區(qū)一模)若關(guān)于x的不等式2-x2≥|x-a|至少有一個(gè)正數(shù)解,則實(shí)數(shù)a的取值范圍是
(-2,
9
4
]
(-2,
9
4
]
分析:原不等式為:2-x2≥|x-a|,我們?cè)谕蛔鴺?biāo)系畫出y=2-x2(y≥0,x>0)和 y=|x|兩個(gè)圖象,利用數(shù)形結(jié)合思想,易得實(shí)數(shù)a的取值范圍.
解答:解:不等式為:2-x2≥|x-a|,且 0≤2-x2
在同一坐標(biāo)系畫出y=2-x2(y≥0,x>0)和 y=|x|兩個(gè)函數(shù)圖象,
將絕對(duì)值函數(shù) y=|x|向左移動(dòng),當(dāng)右支經(jīng)過 (0,2)點(diǎn),a=-2;
將絕對(duì)值函數(shù) y=|x|向右移動(dòng)讓左支與拋物線y=2-x2(y≥0,x>0)相切時(shí),
y-0=-(x-a)
y=2-x2
可得 x2-x+a-2=0,
再由△=0 解得a=
9
4

數(shù)形結(jié)合可得,實(shí)數(shù)a的取值范圍是(-2,
9
4
]

故答案為:(-2,
9
4
]
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是一元二次函數(shù)的圖象,及絕對(duì)值函數(shù)圖象,其中在同一坐標(biāo)中,畫出y=2-x2(y≥0,x>0)和 y=|x|兩個(gè)圖象,結(jié)合數(shù)形結(jié)合的思想得到答案,是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河西區(qū)一模)設(shè)函數(shù)f(x)=(1+x)2+ln(1+x)2
(1)求f(x)的單調(diào)區(qū)間;
(2)若當(dāng)x∈[
1e
-1,e-1]時(shí),不等式f(x)<m恒成立,求實(shí)數(shù)m的取值范圍;
(3)若關(guān)于x的方程f(x)=x2+x+a在區(qū)間[0,2]上恰好有兩個(gè)相異的實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河西區(qū)一模)已知平面內(nèi)點(diǎn)A(cos
x
2
,sin
x
2
)
,點(diǎn)B(1,1),
OA
+
OB
=
OC
,f(x)=|
OC
|2

(1)求f(x)的最小正周期;
(2)若x∈[-π,π],求f(x)的最大和最小值,并求當(dāng)f(x)取最值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河西區(qū)一模)若數(shù)列{an} 滿足
an+1 2
an 2
=p(p為正常數(shù),n∈N*),則稱{an} 為等方比數(shù)列.甲:數(shù)列{an} 是等方比數(shù)列;乙:數(shù)列{an} 是等比數(shù)列.則甲是乙的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河西區(qū)一模)設(shè)復(fù)數(shù)Z滿足Z•(1+2i)=4+3i,則Z等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•河西區(qū)一模)(2x3-
1
x
7的展開式中常數(shù)項(xiàng)為a,則a的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案