(本小題共13分)
已知函數(shù)).
(Ⅰ)求函數(shù)的單調區(qū)間;
(Ⅱ)函數(shù)的圖像在處的切線的斜率為若函數(shù),在區(qū)間(1,3)上不是單調函數(shù),求 的取值范圍。

(1)當f(x)的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,
 f(x)的單調遞增區(qū)間為(,,單調遞減區(qū)間為(0,
(2)

解析試題分析:解:(I)                         ……2分
 即 
f(x)的單調遞增區(qū)間為(0,),單調遞減區(qū)間為(,    ………4分
 , 
f(x)的單調遞增區(qū)間為(,,單調遞減區(qū)間為(0,) ……6分
(II)          ……8分
+3    ……9分
                     ………10分
  ……11分
……12分  即:      ……13分
考點:導數(shù)在研究函數(shù)中點運用
點評:解決該試題關鍵是利用導數(shù)的符號,求解函數(shù)單調性,并能結合函數(shù)的單調性,得到導數(shù)是恒大于等于零或者是恒小于等于零來得到參數(shù)的范圍。屬于基礎題。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(Ⅰ)作出函數(shù)的圖像,并根據(jù)圖像寫出函數(shù)的單調區(qū)間;以及在各單調區(qū)間上的增減性.
(Ⅱ)求函數(shù)時的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)是奇函數(shù),是偶函數(shù)。(1)求的值;(2)設對任意恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(I)求x為何值時,上取得最大值;
(II)設是單調遞增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)設時,求函數(shù)極大值和極小值;
(2)時討論函數(shù)的單調區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù),。
(1)當時,求的單調區(qū)間;
(2)(i)設的導函數(shù),證明:當時,在上恰有一個使得;
(ii)求實數(shù)的取值范圍,使得對任意的,恒有成立。
注:為自然對數(shù)的底數(shù)。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是定義在上的偶函數(shù),且時,。
(1)求,;
(2)求函數(shù)的表達式;
(3)若,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若是定義域上的單調函數(shù),求的取值范圍;
(2)若在定義域上有兩個極值點,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
求(1)的值域;
(2)記的內角A、B、C的對邊長分別為a,b,c,若=1,b=1,c=,求a的值。

查看答案和解析>>

同步練習冊答案