已知函數(shù)g(x)=
1
xsinθ
+lnx在[1,+∞)上為增函數(shù),且θ∈(0,π),f(x)=mx-
m-1
x
-lnx(m∈R).
(Ⅰ)求θ的值;
(Ⅱ)若f(x)-g(x)在[1,+∞)上為單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)設(shè)h(x)=
2e
x
,若在[1,e]上至少存在一個x0,使得f(x0)-g(x0)>h(x0)成立,求m的取值范圍.
分析:(1)由題意可知
sinθ•x-1
sinθ•x2
≥0
.由θ∈(0,π),知sinθ>0.再由sinθ≥1,結(jié)合θ∈(0,π),可以得到θ的值.
(2)由題設(shè)條件知(f(x)-g(x))=
mx2-2x+m
x2
.mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.由此知m≥
2x
1+x2
,由此可知m的取值范圍.
(3)構(gòu)造F(x)=f(x)-g(x)-h(x),F(x)=mx-
m
x
-2lnx-
2e
x
.由此入手可以得到m的取值范圍是(
4e
e2-1
,+∞)
解答:解:(1)由題意,g′(x)=-
1
sinθ•x2
+
1
x
≥0在[1,+∞)上恒成立,即
sinθ•x-1
sinθ•x2
≥0

∵θ∈(0,π),∴sinθ>0.故sinθ•x-1≥0在[1,+∞)上恒成立,只須sinθ•1-1≥0,
即sinθ≥1,只有sinθ=1.結(jié)合θ∈(0,π),得θ=
π
2

(2)由(1),得f(x)-g(x)=mx-
m
x
-2lnx

(f(x)-g(x))=
mx2-2x+m
x2

∵f(x)-g(x)在其定義域內(nèi)為單調(diào)函數(shù),
∴mx2-2x+m≥0或者mx2-2x+m≤0在[1,+∞)恒成立.mx2-2x+m≥0等價于m(1+x2)≥2x,即m≥
2x
1+x2
,
2x
x2+1
=
2
x+
1
x
,(
2
x+
1
x
max=1,∴m≥1.mx2-2x+m≤0等價于m(1+x2)≤2x,即m≤
2x
1+x2

在[1,+∞)恒成立,而
2x
x2+1
∈(0,1],m≤0.
綜上,m的取值范圍是(-∞,0]∪[1,+∞).
(3)構(gòu)造F(x)=f(x)-g(x)-h(x),F(x)=mx-
m
x
-2lnx-
2e
x

當(dāng)m≤0時,x∈[1,e],mx-
m
x
≤0
-2lnx-
2e
x
<0
,
所以在[1,e]上不存在一個x0,使得f(x0)-g(x0)>h(x0)成立.
當(dāng)m>0時,(F(x))′=m+
m
x2
-
2
x
+
2e
x2
=
mx2-2x+m+2e
x2

因為x∈[1,e],所以2e-2x≥0,mx2+m>0,
所以(F(x))'>0在x∈[1,e]恒成立.
故F(x)在[1,e]上單調(diào)遞增,F(x)max=F(e)=me-
m
e
-4
,只要me-
m
e
-4>0
,
解得m>
4e
e2-1

故m的取值范圍是(
4e
e2-1
,+∞)
點評:本題考查函數(shù)的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,注意挖掘隱含條件,仔細(xì)解答.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知函數(shù)g(x)=1-cos(
π
2
x+2ψ)(0<ψ<
π
2
)的圖象過點(1,2),若有4個不同的正數(shù)xi 滿足g(xi)=M,且xi<8(i=1,2,3,4),則x1+x2+x3+x4等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)g(x)=1-2x,f[g(x)]=
1-x2x2
,則f(0)=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省南昌市安義中學(xué)高一(上)第一次月考數(shù)學(xué)試卷(解析版) 題型:填空題

已知函數(shù)g(x)=1-2x,,則f(0)=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市黃浦區(qū)大同中學(xué)高考數(shù)學(xué)專項訓(xùn)練:三角函數(shù)(解析版) 題型:選擇題

(理)已知函數(shù)g(x)=1-cos(x+2ψ)(0<ψ<)的圖象過點(1,2),若有4個不同的正數(shù)xi 滿足g(xi)=M,且xi<8(i=1,2,3,4),則x1+x2+x3+x4等于( )
A.12
B.20
C.12或20
D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年11月上海市大同中學(xué)高三數(shù)學(xué)練習(xí)試卷(三角專項)(解析版) 題型:選擇題

(理)已知函數(shù)g(x)=1-cos(x+2ψ)(0<ψ<)的圖象過點(1,2),若有4個不同的正數(shù)xi 滿足g(xi)=M,且xi<8(i=1,2,3,4),則x1+x2+x3+x4等于( )
A.12
B.20
C.12或20
D.無法確定

查看答案和解析>>

同步練習(xí)冊答案