如果復(fù)數(shù)z=(m2+m-1)+(4m2-8m+3)i (m∈R)的共軛復(fù)數(shù)對(duì)應(yīng)的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
在一個(gè)投擲硬幣的游戲中,把一枚硬幣連續(xù)拋兩次,記“第一次出現(xiàn)正面”為事件A,“第二次出現(xiàn)正面”為事件B,則P(B|A)等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)=,則下列結(jié)論正確的是( )
A.當(dāng)x=時(shí)取最大值 B.當(dāng)x=時(shí)取最小值
C.當(dāng)x=-時(shí)取最大值 D.當(dāng)x=-時(shí)取最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知曲線C的極坐標(biāo)方程是ρ=2,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線L的參數(shù)方程為 (t為參數(shù))
(1)寫出直線L的普通方程與Q曲線C的直角坐標(biāo)方程;
(2)設(shè)曲線C經(jīng)過伸縮變換得到曲線C,設(shè) M(x,y)為C上任意一點(diǎn),求的最小值,并求相應(yīng)的點(diǎn)M的坐標(biāo)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知x、y的取值如下表:
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
從散點(diǎn)圖分析,y與x線性相關(guān),且回歸方程為y=0.95x+a,則a=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com