【題目】設(shè)函數(shù)f(x)=|x+m|.
(Ⅰ) 解關(guān)于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)當(dāng)x≠0時,證明:

【答案】解:(Ⅰ)不等式f(1)+f(﹣2)≥5等價于|m+1|+|m﹣2|≥5,
可化為 ,解得m≤﹣2;
,無解;
,解得m≥3;
綜上不等式解集為(﹣∞,﹣2]∪[3,+∞)
(Ⅱ)證明:當(dāng)x≠0時, ,|x|>0,

【解析】(Ⅰ)問題等價于|m+1|+|m﹣2|≥5,通過討論m的范圍,求出不等式的解集即可;(Ⅱ)根據(jù)絕對值的性質(zhì)證明即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解絕對值不等式的解法的相關(guān)知識,掌握含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,EP交圓于E,C兩點(diǎn),PD切圓于D,G為CE上一點(diǎn)且PG=PD,連接DG并延長交圓于點(diǎn)A,作弦AB垂直EP,垂足為F.

(1)求證:BD⊥AD;
(2)若AC=BD,AB=6,求弦DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,某地最近幾年某商品的需求量逐年上升.下表為部分統(tǒng)計(jì)數(shù)據(jù):

年份

需求量(萬件)

為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,令,.

(1)填寫下列表格并求出關(guān)于的線性回歸方程:

時間代號

(萬件)

(2)根據(jù)所求的線性回歸方程,預(yù)測到年年底,某地對該商品的需求量是多少?

(附:線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】O為坐標(biāo)原點(diǎn),直線l與圓x2+y2=2相切.
(1)若直線l分別與x、y軸正半軸交于A、B兩點(diǎn),求△AOB面積的最小值及面積取得最小值時的直線l的方程.
(2)設(shè)直線l交橢圓 =1于P、Q兩點(diǎn),M為PQ的中點(diǎn),求|OM|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點(diǎn)C作⊙O的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E.

(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解當(dāng)下高二男生的身高狀況,某地區(qū)對高二年級男生的身高(單位: )進(jìn)行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.

(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?

(2)從所抽取的樣本中身高在的男生中隨機(jī)再選出2人調(diào)查其平時體育鍛煉習(xí)慣對身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為創(chuàng)建“綠色校園”,在校園內(nèi)種植樹木,有A、B、C三種樹木可供選擇,已知這三種樹木6年內(nèi)的生長規(guī)律如下:

A樹木:種植前樹木高0.84米,第一年能長高0.1米,以后每年比上一年多長高0.2米;

B樹木:種植前樹木高0.84米,第一年能長高0.04米,以后每年生長的高度是上一年生長高度的2倍;

C樹木:樹木的高度(單位:米)與生長年限(單位:年,)滿足如下函數(shù):表示種植前樹木的高度,取).

(1)若要求6年內(nèi)樹木的高度超過5米,你會選擇哪種樹木?為什么?

(2)若選C樹木,從種植起的6年內(nèi),第幾年內(nèi)生長最快?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)),為自然對數(shù)的底數(shù).

(Ⅰ)當(dāng)時,求函數(shù)在區(qū)間上的最大值;

(Ⅱ)若函數(shù)只有一個零點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信紅包是一款年輕人非常喜歡的手機(jī)應(yīng)用.某網(wǎng)絡(luò)運(yùn)營商對甲、乙兩個品牌各種型號的手機(jī)在相同環(huán)境下?lián)尩郊t包的個數(shù)進(jìn)行統(tǒng)計(jì),得到如下數(shù)據(jù):

品牌 型號

甲品牌(個)

4

3

8

6

12

乙品牌(個)

5

7

9

4

3

紅包個數(shù)

手機(jī)品牌

優(yōu)良

一般

合計(jì)

甲品牌(個)

乙品牌(個)

合計(jì)

(Ⅰ)如果搶到紅包個數(shù)超過個的手機(jī)型號為“優(yōu)良”,否則為“一般”,請完成上述表格,并據(jù)此判斷是否有的把握認(rèn)為搶到紅包的個數(shù)與手機(jī)品牌有關(guān)?

(Ⅱ)不考慮其它因素,現(xiàn)要從甲、乙兩品牌的種型號中各選出種型號的手機(jī)進(jìn)行促銷活動,求恰有一種型號是“優(yōu)良”,另一種型號是“一般”的概率;

參考公式:隨機(jī)變量的觀察值計(jì)算公式:,

其中.臨界值表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習(xí)冊答案