分析 (Ⅰ)運(yùn)用余弦定理可得b2-a2=$\sqrt{2}$bc-c2,結(jié)合條件可得b=$\frac{3\sqrt{2}}{4}$c,a=$\frac{\sqrt{10}}{4}$c.再由余弦定理,可得cosC,進(jìn)而得到tanC;
(Ⅱ)運(yùn)用兩角和的正弦公式和正弦定理,以及三角形的面積公式計(jì)算即可得到所求值.
解答 解:(Ⅰ)∵A=$\frac{π}{4}$,∴由余弦定理可得:a2=b2+c2-2bccos$\frac{π}{4}$,
∴b2-a2=$\sqrt{2}$bc-c2,
又b2-a2=$\frac{1}{2}$c2.∴$\sqrt{2}$bc-c2=$\frac{1}{2}$c2.
∴$\sqrt{2}$b=$\frac{3}{2}$c.可得b=$\frac{3\sqrt{2}}{4}$c,
∴a2=b2-$\frac{1}{2}$c2=$\frac{5}{8}$c2,即a=$\frac{\sqrt{10}}{4}$c.
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{\frac{5}{8}{c}^{2}+\frac{9}{8}{c}^{2}-{c}^{2}}{2×\frac{\sqrt{10}}{4}c•\frac{3\sqrt{2}}{4}c}$=$\frac{\sqrt{5}}{5}$.
∵C∈(0,π),
∴sinC=$\sqrt{1-co{s}^{2}C}$=$\frac{2\sqrt{5}}{5}$.
∴tanC=$\frac{sinC}{cosC}$=2.
(Ⅱ)由sinB=sin(A+C)=sin(C+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$(sinC+cosC)=$\frac{3\sqrt{10}}{10}$,
由正弦定理得c=$\frac{bsinC}{sinB}$=$\frac{2\sqrt{2}}{3}$b,因?yàn)閎=3,
所以c=2$\sqrt{2}$,又A=$\frac{π}{4}$,
則S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}$×$3×2\sqrt{2}$×$\frac{\sqrt{2}}{2}$=3.
點(diǎn)評(píng) 本題考查了正弦定理、余弦定理、同角三角形基本關(guān)系式、三角形面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${0.6^7}<{log_{0.6}}7<{7^{0.6}}$ | B. | 0.67<70.6<log0.67 | ||
C. | ${log_{0.6}}7<{7^{0.6}}<{0.6^7}$ | D. | ${log_{0.6}}7<{0.6^7}<{7^{0.6}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x-4)2+(y-6)2=5 | B. | (x-4)2+(y-6)2=10 | C. | (x-2)2+(y-1)2=5 | D. | (x-6)2+(y-4)2=25 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com