6.如圖,AB是圓O的直徑,且AB=6,CD是弦,BA、CD的延長線交于點(diǎn)P,PA=4,PD=5,則∠COD=60°.

分析 直接利用圓的割線定理求出弦CD的長,利用AB的長確定三角形OCD為正三角形,進(jìn)一步求出結(jié)果.

解答 解:AB是圓O的直徑,CD是弦,BA、CD的延長線交于點(diǎn)P,
利用割線定理得:PA•PB=PD•PC,
由于:AB=6,PA=4,PD=5,
所以:PA•(PA+AB)=PD•(PD+CD),
解得:CD=3,
所以:△OCD為正三角形,
則:∠COD=60°.
故答案為:60°.

點(diǎn)評 本題考查的知識要點(diǎn):割線定理的應(yīng)用,正三角形的性質(zhì),主要考查學(xué)生的應(yīng)用能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知在數(shù)列{an}中,a1=1,且對任意的n∈N*,恒有2n+1an=2nan+1
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足bn=log2an+1,求數(shù)列{$\frac{1}{_{n}_{n+1}}$}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.若點(diǎn)P(x,y)在曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù),θ∈R),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若射線θ=$\frac{π}{4}$(ρ≥0)與曲線C相交于A、B兩點(diǎn),求|OA|+|OB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}$sin2x-cos2x-$\frac{1}{2}$,x∈R
(Ⅰ)求函數(shù)f(x)的最小值和最小正周期;
(Ⅱ)設(shè)在△ABC中,內(nèi)角A,B,C所對邊的邊長分別為a,b,c,且c=2$\sqrt{3}$,f(C)=0,若sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在極坐標(biāo)系中,圓C的方程為ρ=2$\sqrt{2}sin(θ+\frac{π}{4})$,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=t-{1_{\;}}}\\{y=2t-1}\end{array}}$(t為參數(shù)),則圓心C到直線l距離為$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.四棱錐P-ABCD中,PA⊥底面ABCD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°.
(1)在側(cè)棱PC上是否存在一點(diǎn)Q,使BQ∥平面PAD?證明你的結(jié)論;
(2)求證:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知△ABC的頂點(diǎn)A(4,1),AB邊上的中線CM所在的直線方程為2x-y-5=0,AC邊上的高BH所在直線為x-2y-5=0.求:
(1)頂點(diǎn)C的坐標(biāo);
(2)直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,且a,b,c成等比數(shù)列,若sinB=$\frac{5}{13}$,cosB=$\frac{12}{ac}$,則a+c的值為3$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知點(diǎn)P的極坐標(biāo)是$(1,\frac{π}{3})$,則過點(diǎn)P且垂直于極軸的直線的極坐標(biāo)方程是(  )
A.ρ=1B.ρ=cosθC.$ρ=-\frac{1}{cosθ}$D.$ρ=\frac{1}{2cosθ}$

查看答案和解析>>

同步練習(xí)冊答案