直線y=x+1與雙曲線C:恒有公共點.

(1)求雙曲線C的離心率e的范圍;

(2)若直線L:y=x+m(m∈R)過雙曲線C的右焦點F,與雙曲線交于P、Q兩點,并且滿足,求雙曲線的方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高二版(A選修1-1) 2009-2010學年 第18期 總第174期 人教課標版(A選修1-1) 題型:022

直線y=x+1與雙曲線=1相交于A,B兩點,則|AB|=________.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標版高二(A選修2-1) 2009-2010學年 第20期 總第176期 人教課標版(A選修2-1) 題型:044

已知雙曲線C的兩條漸近線經(jīng)過坐標原點,且它們都與以點A(0,)為圓心,半徑為1的圓相切,又知C的一個焦點與A關于直線y=x對稱.

(1)求雙曲線C的標準方程;

(2)設直線y=mx+1與雙曲線C的左支交于A,B兩點,另一直線l經(jīng)過點M(-2,0)及AB的中點,求直線l在y軸上的截距b的倒數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:潮陽一中2007屆高三摸底考試、理科數(shù)學 題型:044

解答題

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑為圓相切,又知C的一個焦點與A關于直線y=x對稱.

(1)

求雙曲線C的方程;

(2)

若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

(3)

設直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:潮陽一中2007屆高三摸底考試、文科數(shù)學 題型:044

解答題

已知焦點在x軸上的雙曲線C的兩條漸近線過坐標原點,且兩條漸近線與以點為圓心,1為半徑為圓相切,又知C的一個焦點與A關于直線y=x對稱.

(1)

求雙曲線C的方程;

(2)

若Q是雙曲線C上的任一點,F(xiàn)1、F2為雙曲線C的左、右兩個焦點,從F1引∠F1QF2的平分線的垂線,垂足為N,試求點N的軌跡方程.

(3)

設直線y=mx+1與雙曲線C的左支交于A、B兩點,另一直線L經(jīng)過M(-2,0)及AB的中點,求直線L在y軸上的截距b的取值范圍.

查看答案和解析>>

同步練習冊答案