(1)已知等差數(shù)列的前項和,求證:
(2)已知有窮等差數(shù)列的前三項和為20,后三項和為130,且,求

(1)利用倒序相加法可以證明;(2)25

解析試題分析:(1)∵,相加得,即;(2)∵,∴,又,∴n=25
考點:本題考查了等差數(shù)列的前n項和及其性質(zhì)
點評:若一個數(shù)列和的各項系數(shù)是“首尾”對稱的,則可采用倒序相加法處理

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列是等差數(shù)列,且
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令求數(shù)列前n項和的公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設(shè)等差數(shù)列的公差,等比數(shù)列為公比為,且,.
(1)求等比數(shù)列的公比的值;
(2)將數(shù)列,中的公共項按由小到大的順序排列組成一個新的數(shù)列,是否存在正整數(shù)(其中)使得都構(gòu)成等差數(shù)列?若存在,求出一組的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知為等差數(shù)列,且
(1)求數(shù)列的第二項
(2)若成等比數(shù)列,求數(shù)列的通項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前n項的和為,且 ().
(1) 求數(shù)列,的通項公式;
(2) 記,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列前三項為,前項的和為,=2550.
⑴ 求的值;  
⑵ 求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列滿足:,的前n項和為
(Ⅰ)求;
(Ⅱ)令bn=(nN*),求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等差數(shù)列滿足:,,的前n項和為
(Ⅰ)求;
(Ⅱ)令 bn= (nN*),求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)
在等差數(shù)列中,已知
(Ⅰ)求通項和前n項和;
(Ⅱ)求的最大值以及取得最大值時的序號的值;
(Ⅲ)求數(shù)列的前n項和.

查看答案和解析>>

同步練習冊答案