已知圓C的圓心為C(m,0),m<3,半徑為
5
,圓C與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn).
(1)求圓C的標(biāo)準(zhǔn)方程
(2)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線PF1與圓C能否相切,若能,求出橢圓E和直線PF1的方程;若不能,請(qǐng)說明理由.
查看本題解析需要登錄
查看解析如何獲取優(yōu)點(diǎn)?普通用戶:2個(gè)優(yōu)點(diǎn)。
如何申請(qǐng)VIP用戶?VIP用戶:請(qǐng)直接登錄即可查看。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心為C(m,0),m<3,半徑為
5
,圓C與橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn).
(1)求圓C的標(biāo)準(zhǔn)方程
(2)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線PF1與圓C能否相切,若能,求出橢圓E和直線PF1的方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心為C(m,0),m<3,半徑為an,圓n與橢圓Sn
x2
a2
+
y2
b2
=1(a>b>0)
有一個(gè)公共點(diǎn)an(3,1),bn分別是橢圓的左、右焦點(diǎn).
(1)求圓bn的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線n與圓Tn能否相切,若能,求出橢圓m∈N*和直線PF1的方程;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鄭州二模)已知圓C的圓心為C(m,0),m<3,半徑為
5
,圓C與離心率e>
1
2
的橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的其中一個(gè)公共點(diǎn)為A(3,l),F(xiàn)1,F(xiàn)2分別是橢圓的左、右焦點(diǎn).
(I)求圓C的標(biāo)準(zhǔn)方程;
(II)若點(diǎn)P的坐標(biāo)為(4,4),試探究直線PF1與圓C能否相切?若能,設(shè)直線PF1與橢圓E相交于A,B兩點(diǎn),求△ABF2的面積;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二下學(xué)期一調(diào)考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題12分)已知圓C的圓心為C(m,0),(m<3),半徑為,圓C與橢圓E:  有一個(gè)公共點(diǎn)A(3,1),分別是橢圓的左、右焦點(diǎn);

(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線與圓C能否相切,若能,求出橢

圓E和直線的方程,若不能,請(qǐng)說明理由。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案