解下列不等式(組):
(1)-x2+2x-
2
3
>0;           
(2)-1<x2+2x-1≤2.
考點:一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)一元二次不等式(組)的解法解得即可.
解答: 解:(1)-x2+2x-
2
3
>0
而方程-x2+2x-
2
3
=0的解為x=1±
3
3

∴-x2+2x-
2
3
>0的解集為1-
3
3
<x<1+
3
3

即不等式的解集為{x|1-
3
3
<x<1+
3
3
}
(2)-1<x2+2x-1≤2,
∴-1<(x+1)2-2≤2,
∴1<(x+1)2≤4,
∴1<|x+1|≤2,
∴不等式的解集為:[-3,2)∪(0,1].
點評:本題主要考查一元二次不等式(組)的解法,要求熟練掌握相應(yīng)的解法,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sinωx+cos(ωx+
π
3
)+cos(ωx-
π
3
)-1,(ω>0,x∈R),且函數(shù)f(x)的最小正周期為π;
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調(diào)增區(qū)間.
(3)當(dāng)x∈[-
π
6
π
3
]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將邊長為1的正方形ABCD沿對角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個命題:
①面DBC是等邊三角形;  
②AC⊥BD;
③三棱錐D-ABC的體積是
2
6

其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{bn}(n∈N*)是遞增的等比數(shù)列,且b1+b3=5,b1b3=4.?dāng)?shù)列{an}滿足an=log2bn+3,
(Ⅰ)求數(shù)列{bn}、{an}的通項公式;
(Ⅱ)若a12+a2+a3+…+am≤a46,求m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,四邊形ABCD為正方形,PD⊥面ABCD,PD=DA=2,F(xiàn),E分別為AD,PC的中點.
(1)證明:DE∥面PFB.          
(2)求點E到平面PFB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=4x+(
1
a+1
)2x+
a+2
a+1
在(-∞,+∞)上存在零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C:(x-2)2+y2=4,直線l經(jīng)過M(1,0),傾斜角為
6
,直線l與圓C交與A、B兩點.
(1)若以直角坐標(biāo)系的原點為極點,以x軸正半軸為極軸,長度單位不變,建立極坐標(biāo)系,寫出圓C的極坐標(biāo)方程;
(2)選擇適當(dāng)?shù)膮?shù),寫出直線l的一個參數(shù)方程,并求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的兩焦點為F1,F(xiàn)2,M為橢圓上一點,且M不在直線F1F2上,∠F1MF2=90°,|F1F2|=2c,|MF1|+|MF2|=2a,則△MF1F2的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點為F,C與過原點的直線相交于A、B兩點,連結(jié)AF、BF,若|AB|=10,|AF|=6,cos∠ABF=
4
5
,則C的離心率e=
 

查看答案和解析>>

同步練習(xí)冊答案