精英家教網(wǎng)如圖,在四邊形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°,且
AB
AC
=50

(1)求sin∠BAC的值;
(2)求△ABD的面積.
分析:(1)先利用勾股定理求出邊AC的長,利用向量的數(shù)量積公式求出cos∠BAC,利用三角函數(shù)的平方關(guān)系求出sin∠BAC的值.
(2)利用兩角和的正弦公式求出sin∠BAD,利用三角形的面積公式求出△ABD的面積.
解答:精英家教網(wǎng)解:(1)在Rt△ADC中,AD=8,CD=6,則AC=10,cos∠CAD=
4
5
,sin∠CAD=
3
5

又∵
AB
AC
=50,AB=13

cos∠BAC=
AB
AC
|
AB
 || 
AC
|
=
5
13

∵0<∠BAC<π,∴sin∠BAC=
12
13
…(6分)
(2)由(1)可求得sin∠BAD=sin(∠BAC+∠CAD)=
63
65
(3)
所以,S△BAD=
1
2
AB•ADsin∠BAD=
252
5
…(12分)
點(diǎn)評:本題考查利用向量的數(shù)量積公式求向量的夾角余弦;考查了三角形的面積公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,△ABC為邊長等于
3
的正三角形,∠BDC=45°,
∠CBD=75°,求線段AC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=7,AD=6,S△ADC=
15
3
2
,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四邊形ABCD中,AC平分∠DAB,∠ABC=60°,AC=6,AD=5,S△ADC=
152
,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過點(diǎn)B作射線BBl∥AC.動點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個單位的速度運(yùn)動,同時動點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個單位的速度運(yùn)動.過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動的時間為t秒.
(1)當(dāng)t為何值時,AD=AB,并求出此時DE的長度;
(2)當(dāng)△DEG與△ACB相似時,求t的值;
(3)以DH所在直線為對稱軸,線段AC經(jīng)軸對稱變換后的圖形為A′C′.
①當(dāng)t>
35
時,連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)線段A′C′與射線BB,有公共點(diǎn)時,求t的取值范圍(寫出答案即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

同步練習(xí)冊答案