試在拋物線y2=﹣4x上求一點P,使其到焦點F的距離與到A(﹣2,1)的距離之和最小,則該點坐標為
[     ]
A.
B.
C.
D.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ex+ax,g(x)=exlnx(e是自然對數(shù)的底數(shù)).
(1)若曲線y=f(x)在x=1處的切線也是拋物線y2=4(x-1)切線,求a的值;
(2)若對于任意x∈R,f(x)>0恒成立,試確定實數(shù)a的取值范圍;
(3)當a=-1時,是否存在x0∈(0,+∞),使曲線C:y=g(x)-f(x)在點x=x0處的切線斜率與f(x)在R上的最小值相等?若存在,求符合條件的x0的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

請考生在第22、23、24題中任選一題做答,如果多做,則按所

做的第一題記分.做答時,用2B鉛筆在答題卡上把所選題目對應的[來源:學科網(wǎng)ZXXK]

題號涂黑.

22.選修4-1:幾何證明選講

如圖,BA是⊙O的直徑,AD是切線,BF、BD是割線,

求證:BE??BF=BC??BD

23.選修4-4:坐標系與參數(shù)方程

在拋物線y2=4a(x+a)(a>0),設有過原點O作一直線分別

交拋物線于A、B兩點,如圖所示,試求|OA|??|OB|的最小值。

24.選修4—5;不等式選講

設|a|<1,函數(shù)f(x)=ax2+x-a(-1≤x≤1),證明:|f(x)|≤

查看答案和解析>>

科目:高中數(shù)學 來源:2011年湖北省荊州市高三質量檢查數(shù)學試卷Ⅱ(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ex+ax,g(x)=exlnx(e是自然對數(shù)的底數(shù)).
(1)若曲線y=f(x)在x=1處的切線也是拋物線y2=4(x-1)切線,求a的值;
(2)若對于任意x∈R,f(x)>0恒成立,試確定實數(shù)a的取值范圍;
(3)當a=-1時,是否存在x∈(0,+∞),使曲線C:y=g(x)-f(x)在點x=x處的切線斜率與f(x)在R上的最小值相等?若存在,求符合條件的x的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省連云港市東海高級中學高考數(shù)學三模試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ex+ax,g(x)=exlnx(e是自然對數(shù)的底數(shù)).
(1)若曲線y=f(x)在x=1處的切線也是拋物線y2=4(x-1)切線,求a的值;
(2)若對于任意x∈R,f(x)>0恒成立,試確定實數(shù)a的取值范圍;
(3)當a=-1時,是否存在x∈(0,+∞),使曲線C:y=g(x)-f(x)在點x=x處的切線斜率與f(x)在R上的最小值相等?若存在,求符合條件的x的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建高二第二次月考文科數(shù)學試卷(解析版) 題型:解答題

如圖,已知直線l:y=2x-4交拋物線y2=4x于A,B兩點,試在拋物線AOB這段曲線上求一點P,使△PAB的面積最大,并求出這個最大面積.

 

查看答案和解析>>

同步練習冊答案