2.已知拋物線x2=3y上兩點(diǎn)A,B的橫坐標(biāo)恰是方程x2+5x+1=0的兩個(gè)實(shí)根,則直線AB的斜率=$-\frac{5}{3}$;直線AB的方程為5x+3y+1=0.

分析 分別設(shè)出A和B的坐標(biāo),代入拋物線解析式和方程中,分別消去平方項(xiàng)得到兩等式,根據(jù)兩等式的特點(diǎn)即可得到直線AB的方程.即可求出直線的斜率.

解答 解:設(shè)A(x1,y1),B(x2,y2),則
把A的坐標(biāo)代入拋物線解析式和已知的方程得:x12=3y1①,x12+5x1+1=0②,
①-②整理得:5x1+3y1+1=0③;
同理把B的坐標(biāo)代入拋物線解析式和已知的方程,化簡(jiǎn)可得:5x2+3y2+1=0④,
③④表示經(jīng)過(guò)A和B的方程,
所以直線AB的方程是:5x+3y+1=0.
直線的斜率為:$-\frac{5}{3}$.
故答案為:$-\frac{5}{3}$;5x+3y+1=0.

點(diǎn)評(píng) 此題考查學(xué)生會(huì)求動(dòng)點(diǎn)的軌跡方程,考查拋物線方程,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.如圖,在四棱錐S-ABCD中,底面是邊長(zhǎng)為2的正方形,SA⊥底面ABCD,且SA=2,E為SC的中點(diǎn),則直線BE與平面ABCD所成角的正弦值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.直線x+$\sqrt{3}$y-1=0的斜率為(  )
A.$\frac{\sqrt{3}}{3}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合M={x|x∈Z且-10≤x≤-3},N={x|x∈Z且|x|≤5 },則M∪N中元素的個(gè)數(shù)為( 。
A.11B.10C.16D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.執(zhí)行如圖的程序框圖,如果輸入的t=0.1,則輸出的n=( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則這個(gè)幾何體外接球的表面積為(  )
A.20πB.40πC.50πD.60π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.正三棱柱ABC-A1B1C1中,AB=2=AA1,則直線AC1與平面BCC1B1所成角的正弦值為$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在平面直角坐標(biāo)系xOy中,已知∠α的頂點(diǎn)為原點(diǎn)O,其始邊與x軸正方向重合,終邊過(guò)兩曲線y=$\sqrt{x+3}$和y=$\sqrt{1-x}$的交點(diǎn),則cos2α+cot($\frac{3π}{2}$+α)=-$\frac{1}{3}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)集合A,B分別是函數(shù)y=log3(9-x2)的定義域和值域,則A∩B=( 。
A.(-3,2)B.(-3,2]C.(0,2]D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案