從雙曲線的左焦點(diǎn)引圓的切線,切點(diǎn)為T, 延長(zhǎng)FT交雙曲線右支于點(diǎn)P, O為坐標(biāo)原點(diǎn),M為PF 的中點(diǎn),則 的大小關(guān)系為  

A.

B.

C.   

D.不能確定

 

【答案】

B

【解析】

試題分析:將點(diǎn)P置于第一象限.設(shè)F1是雙曲線的右焦點(diǎn),連接PF1.∵M(jìn)、O分別為FP、FF1的中點(diǎn),∴|MO|=|PF1|.又由雙曲線定義得, |PF|-|PF1|=2a, |FT|==b.故|MO|-|MT|=|PF1|-|MF|+|FT|=(|PF1|-|PF|)+|FT|

=b-a.故選B.

考點(diǎn):本題主要考查了直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與雙曲線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.

點(diǎn)評(píng):解決該試題的關(guān)鍵是將點(diǎn)P置于第一象限.設(shè)F1是雙曲線的右焦點(diǎn),連接PF1.由M、O分別為FP、FF1的中點(diǎn),知|MO|= |PF1|.由雙曲線定義,知|PF|-|PF1|=2a,|FT|=b.由此知|MO|-|MT|=(|PF1|-|PF|)+|FT|=b-a.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆河北棗強(qiáng)中學(xué)高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

從雙曲線的左焦點(diǎn)引圓的切線,切點(diǎn)為,延長(zhǎng)交雙曲線右支于點(diǎn),若為線段的中點(diǎn),為坐標(biāo)原點(diǎn),則的大小關(guān)系為(   )

A.                   B.

C.                   D.不確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年浙江省杭州市高二上學(xué)期期末考試數(shù)學(xué)理卷 題型:選擇題

從雙曲線的左焦點(diǎn)引圓的切線,切點(diǎn)為,延長(zhǎng)交雙曲線右支于點(diǎn),若為線段的中點(diǎn),為坐標(biāo)原點(diǎn),則的大小關(guān)系為

A.     B.     

C.     D.不確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建廈門雙十中學(xué)高三考前熱身理數(shù)試卷 題型:選擇題

從雙曲線的左焦點(diǎn)引圓的切線,切點(diǎn)為T,延長(zhǎng)FT交雙曲線右支于點(diǎn)P,O為坐標(biāo)原點(diǎn),M為PF 的中點(diǎn),則 的大小關(guān)系為  ( ▲ ) .

A.      B.

C.      D..不能確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省高二12月月考數(shù)學(xué)卷doc 題型:選擇題

從雙曲線的左焦點(diǎn)引圓的切線,切點(diǎn)為T,延長(zhǎng)FT交雙曲線右支于P點(diǎn),若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|與b-a的大小關(guān)系為( )

A、|MO|-|MT|>b-a        B、|MO|-|MT|=b-a     C、|MO|-|MT|<b-a          D、不確定

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試(重慶卷)數(shù)學(xué)理工類模擬試卷(四) 題型:選擇題

從雙曲線的左焦點(diǎn)引圓的切線,切點(diǎn)為,延長(zhǎng)交雙曲線右支于點(diǎn),若為線段的中點(diǎn),為坐標(biāo)原點(diǎn),則的大小關(guān)系為

A.                   B.

C.                   D.不確定.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案