11.已知向量$\overrightarrow a=(ksin\frac{x}{3},co{s^2}\frac{x}{3})$,$\overrightarrow b=(cos\frac{x}{3},-k)$,實數(shù)k為大于零的常數(shù),函數(shù)f(x)=$\overrightarrow a•\overrightarrow b$,x∈R,且函數(shù)f(x)的最大值為$\frac{{\sqrt{2}-1}}{2}$.
(Ⅰ)求k的值;
(Ⅱ)在△ABC中,a,b,c分別為內(nèi)角A,B,C所對的邊,若$\frac{π}{2}$<A<π,f(A)=0,且a=2$\sqrt{10}$,求$\overrightarrow{AB}•\overrightarrow{AC}$的最小值.

分析 (Ⅰ)通過斜率的數(shù)量積以及兩角和與差的三角函數(shù)化簡函數(shù)的解析式,然后通過解函數(shù)的最大值,求k的值;
(Ⅱ)利用f(A)=0,得到A的值,然后利用余弦定理通過a=2$\sqrt{10}$得到bc范圍,然后求$\overrightarrow{AB}•\overrightarrow{AC}$的最小值.

解答 (本小題滿分12分)
解:(Ⅰ)由已知$f(x)=\overrightarrow a•\overrightarrow b=(ksin\frac{x}{3},co{s^2}\frac{x}{3})•(cos\frac{x}{3},-k)$=$ksin\frac{x}{3}cos\frac{x}{3}-kco{s^2}\frac{x}{3}=\frac{1}{2}ksin\frac{2x}{3}-k\frac{{1+cos\frac{2x}{3}}}{2}=\frac{k}{2}(sin\frac{2x}{3}-cos\frac{2x}{3})-\frac{k}{2}$…(2分)=$\frac{{\sqrt{2}k}}{2}(\frac{{\sqrt{2}}}{2}sin\frac{2x}{3}-\frac{{\sqrt{2}}}{2}cos\frac{2x}{3})-\frac{k}{2}=\frac{{\sqrt{2}k}}{2}sin(\frac{2x}{3}-\frac{π}{4})-\frac{k}{2}$…(5分)
因為x∈R,所以f(x)的最大值為$\frac{{(\sqrt{2}-1)k}}{2}=\frac{{\sqrt{2}-1}}{2}$,則k=1…(6分)
(Ⅱ)由(Ⅰ)知,$f(x)=\frac{{\sqrt{2}}}{2}sin(\frac{2x}{3}-\frac{π}{4})-\frac{1}{2}$,所以$f(A)=\frac{{\sqrt{2}}}{2}sin(\frac{2A}{3}-\frac{π}{4})-\frac{1}{2}=0$
化簡得$sin(\frac{2A}{3}-\frac{π}{4})=\frac{{\sqrt{2}}}{2}$
因為$\frac{π}{2}<A<π$,所以$\frac{π}{12}<\frac{2A}{3}-\frac{π}{4}<\frac{5π}{12}$
則$\frac{2A}{3}-\frac{π}{4}=\frac{π}{4}$,解得$A=\frac{3π}{4}$…(8分)
因為$cosA=-\frac{{\sqrt{2}}}{2}=\frac{{{b^2}+{c^2}-{a^2}}}{2bc}=\frac{{{b^2}+{c^2}-40}}{2bc}$,所以${b^2}+{c^2}+\sqrt{2}bc=40$
則${b^2}+{c^2}+\sqrt{2}bc=40≥2bc+\sqrt{2}bc$,所以$bc≤\frac{40}{{2+\sqrt{2}}}=20(2-\sqrt{2})$…(10分)
則$\overrightarrow{AB}•\overrightarrow{AC}=|{\overrightarrow{AB}}||{\overrightarrow{AC}}|cos\frac{3π}{4}=-\frac{{\sqrt{2}}}{2}bc≥20(1-\sqrt{2})$
所以$\overrightarrow{AB}•\overrightarrow{AC}$的最小值為$20(1-\sqrt{2})$…(12分)

點評 本題考查斜率的數(shù)量積,余弦定理的應用,三角函數(shù)的最值的求法,考查計算能力.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=sin2x+$\sqrt{3}$sinx•cosx-$\frac{1}{2}$.
(1)寫出f(x)的最小正周期;
(2)f(x)的圖象可由y=sinx的圖象經(jīng)過怎樣的變換得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.若f(x)=x2+px+q滿足f(1)=f(2)=0,則f(4)的值是(  )
A.5B.-5C.6D.-6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設(shè)x,y∈(-2,2),且xy=-1,則函數(shù)$\frac{4}{4-{x}^{2}}$+$\frac{9}{9-{y}^{2}}$的最小值為$\frac{12}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知等比數(shù)列{an}的第5項是二項式(x+$\frac{1}{x}$)4展開式的常數(shù)項,則a3•a7( 。
A.5B.18C.24D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知等比數(shù)列{an}中,a2a10=9,則a5+a7有最小值6,最大值-6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設(shè)平面區(qū)域D是由雙曲線y2-$\frac{{x}^{2}}{4}$=1的兩條漸近線和拋物線y2=-8x的準線所圍成的三角形區(qū)域(含邊界),若點(x,y)∈D,則$\frac{2y-x+1}{x+1}$的取值范圍是(  )
A.[-1,$\frac{1}{3}$]B.[-1,1]C.[0,$\frac{1}{3}$]D.[0,$\frac{4}{3}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)△ABC的面積為S,且2$\sqrt{3}$S-$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,c=2.
(Ⅰ)求角A的大小;
(Ⅱ)若a2+b2-c2=$\frac{6}{5}$ab,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(-x),當0≤x≤1時,f(x)=2x,則f(2015)等于(  )
A.-2B.-1C.1D.2

查看答案和解析>>

同步練習冊答案