【題目】已知邊長為的等邊三角形的一個頂點位于原點,另外兩個頂點在拋物線)上.

1)求拋物線的方程;

2)直線交拋物線,兩點,交拋物線的準線于點,交軸于點,若.證明:直線過定點,并求出定點坐標.

【答案】1;(2)證明見解析;定點.

【解析】

1)利用拋物線的對稱性,可知點在拋物線上,將點代入拋物線方程,求出值,進而得解;

2先求出拋物線的準線方程,設(shè)出直線的方程,求出點和點坐標,設(shè)出點和點坐標,聯(lián)立直線的方程與拋物線方程,得到,,然后進行向量數(shù)量積的坐標運算,化簡,并將韋達定理代入,可得,求出的值,進而得解.

1,

因為邊長為的等邊三角形的一個頂點位于原點,

另外兩個頂點在拋物線)上,

并且,該拋物線關(guān)于軸對稱,

所以點在拋物線上,

所以,解得,

所以拋物線的方程為.

2)證明:由(1)得拋物線的準線的方程為.

設(shè)直線的方程為),

,解得,所以

,解得,所以,

由得,得,其中.

設(shè),,則,

,

,

.

,得,解得

所以直線的方程為,因此直線過定點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】噪聲污染已經(jīng)成為影響人們身體健康和生活質(zhì)量的嚴重問題,為了了解聲音強度(單位:分貝)與聲音能量(單位:)之間的關(guān)系,將測量得到的聲音強度和聲音能量=1,2…,10)數(shù)據(jù)作了初步處理,得到如圖散點圖及一些統(tǒng)計量的值.

45.7

0.51

5.1

表中

(1)根據(jù)散點圖判斷,哪一個適宜作為聲音強度關(guān)于聲音能量的回歸方程類型?(給出判斷即可,不必說明理由)

(2)根據(jù)表中數(shù)據(jù),求聲音強度關(guān)于聲音能量的回歸方程;

(3)當聲音強度大于60分貝時屬于噪音,會產(chǎn)生噪音污染,城市中某點共受到兩個聲源的影響,這兩個聲源的聲音能量分別是,且.己知點的聲音能量等于聲音能量之和.請根據(jù)(1)中的回歸方程,判斷點是否受到噪音污染的干擾,并說明理由.

附:對于一組數(shù)據(jù).其回歸直線的斜率和截距的最小二乘估計分別為:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個零點,,且則下列結(jié)論中不正確的是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,,,,且.

1)求證:平面平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】第23屆冬季奧運會于2018年2月9日至2月25日在韓國平昌舉行,期間正值我市學校放寒假,寒假結(jié)束后,某校工會對全校教職工在冬季奧運會期間每天收看比賽轉(zhuǎn)播的時間作了一次調(diào)查,得到如下頻數(shù)分布表:

收看時間(單位:小時)

收看人數(shù)

14

30

16

28

20

12

(1)若將每天收看比賽轉(zhuǎn)播時間不低于3小時的教職工定義為“體育達人”,否則定義為“非體育達人”,請根據(jù)頻數(shù)分布表補全列聯(lián)表:

合計

體育達人

40

非體育達人

30

合計

并判斷能否有的把握認為該校教職工是否為“體育達人”與“性別”有關(guān);

(2)在全!绑w育達人”中按性別分層抽樣抽取6名,再從這6名“體育達人”中選取2名作冬奧會知識講座.記其中女職工的人數(shù)為,求的分布列與數(shù)學期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為慶祝中華人民共和國成立70周年,2019101日晚,金水橋南,百里長街成為舞臺,3290名聯(lián)歡群眾演員跟著音樂的旋律,用手中不時變幻色彩的光影屏,流動著拼組出五星紅旗、祖國萬歲、長城等各式圖案和文字.光影瀲滟間,以《紅旗頌》《我們走在大路上》《在希望的田野上》《領(lǐng)航新時代》四個章節(jié),展現(xiàn)出中華民族從站起來、富起來到強起來的偉大飛躍.在每名演員的手中都有一塊光影屏,每塊屏有1024顆燈珠,若每個燈珠的開、關(guān)各表示一個信息,則每塊屏可以表示出不同圖案的個數(shù)為(

A.2048B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】“克拉茨猜想”又稱“猜想”,是德國數(shù)學家洛薩克拉茨在年世界數(shù)學家大會上公布的一個猜想:任給一個正整數(shù),如果是偶數(shù),就將它減半;如果為奇數(shù)就將它乘,不斷重復這樣的運算,經(jīng)過有限步后,最終都能夠得到,得到即終止運算,己知正整數(shù)經(jīng)過次運算后得到,則的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為.

1)寫出曲線的極坐標方程和直線的直角坐標方程;

2)若射線與曲線交于兩點,與直線交于點,射線與曲線交于兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解疫情期間哈一中高三學生的心理需求,更好的開展高考前的心理健康教育工作,心理老師設(shè)計了兩個問題,第一個問題是你出生的月份是奇數(shù)嗎?;第二個問題是你是否需要心理疏導?”.讓被調(diào)查者在保密的情況下擲一個均勻的骰子,其他人不知道擲骰子的結(jié)果,要求:當出現(xiàn)1點或2點時,回答第一個問題;否則回答第二個問題,由于其他人不知道他回答的是哪一個問題,因此,當他回答時,你也無法知道他是否有心理問題,這種調(diào)查既保護了他的隱私,也能反映真實情況,可以從調(diào)查結(jié)果中得到需要的估計,若調(diào)查的900名學生中有156人回答,由此可估計我校高三需要心理疏導的學生所占的比例約為______

查看答案和解析>>

同步練習冊答案