【題目】在長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點(diǎn).

(1)證明:AC⊥D1E;
(2)求DE與平面AD1E所成角的正弦值.

【答案】
(1)證明:連接BD

∵ABCD﹣A1B1C1D1是長(zhǎng)方體,

∴D1D⊥平面ABCD,

又AC平面ABCD

∴D1D⊥AC

在長(zhǎng)方形ABCD中,AB=BC

∴BD⊥AC

又BD∩D1D=D

∴AC⊥平面BB1D1D,

而D1E平面BB1D1D

∴AC⊥D1E


(2)解:如圖建立空間直角坐標(biāo)系D﹣xyz,則A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),

設(shè)平面AD1E的法向量為 ,則

令z=1,則

∴cos< , >= =

∴DE與平面AD1E所成角的正弦值為


【解析】(1)根據(jù)已知中長(zhǎng)方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn),結(jié)合長(zhǎng)方體的幾何特征,我們可得D1D⊥AC,BD⊥AC,結(jié)合線面垂直的判定定理即可得到AC⊥平面BB1D1D,即可得出結(jié)論;(2)建立空間直角坐標(biāo)系,求出平面AD1E的法向量,利用向量的夾角公式,即可求DE與平面AD1E所成角的正弦值.
【考點(diǎn)精析】利用空間角的異面直線所成的角對(duì)題目進(jìn)行判斷即可得到答案,需要熟知已知為兩異面直線,A,C與B,D分別是上的任意兩點(diǎn),所成的角為,則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求的單調(diào)區(qū)間;

(2)設(shè)是曲線圖象上的兩個(gè)相異的點(diǎn),若直線的斜率恒成立,求實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù)有兩個(gè)極值點(diǎn),若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知 ,當(dāng)k為何值時(shí),
(1) 垂直?
(2) 平行?平行時(shí)它們是同向還是反向?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某科技公司生產(chǎn)一種手機(jī)加密芯片,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于為合格品,小于為次品.現(xiàn)隨機(jī)抽取這種芯片共件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如表:

測(cè)試指標(biāo)

芯片數(shù)量(件)

已知生產(chǎn)一件芯片,若是合格品可盈利元,若是次品則虧損元.

(Ⅰ)試估計(jì)生產(chǎn)一件芯片為合格品的概率;并求生產(chǎn)件芯片所獲得的利潤(rùn)不少于元的概率.

(Ⅱ)記為生產(chǎn)件芯片所得的總利潤(rùn),求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為實(shí)數(shù), 為自然對(duì)數(shù)的底數(shù)),曲線處的切線與直線平行.

(1)求實(shí)數(shù)的值,并判斷函數(shù)在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù);

(2)證明:當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市共有初中學(xué)生270000人,其中初一年級(jí),初二年級(jí),初三年級(jí)學(xué)生人數(shù)分別為99000,90000,81000,為了解該市學(xué)生參加“開放性科學(xué)實(shí)驗(yàn)活動(dòng)”的意向,現(xiàn)采用分層抽樣的方法從中抽取一個(gè)容量為3000的樣本,那么應(yīng)該抽取初三年級(jí)的人數(shù)為(
A.800
B.900
C.1000
D.1100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中, 平面的中點(diǎn), 上的點(diǎn)且上的高.

(1)證明: 平面;

2)若,求三棱錐的體積;

3)在線段上是否存在這樣一點(diǎn),使得平面?若存在,說(shuō)出點(diǎn)的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是橢圓上關(guān)于原點(diǎn)對(duì)稱的任意兩點(diǎn),且點(diǎn)都不在 軸上.

(1)若,求證: 直線的斜率之積為定值;

(2)若橢圓長(zhǎng)軸長(zhǎng)為,點(diǎn)在橢圓上,設(shè)是橢圓上異于點(diǎn)的任意兩點(diǎn),且.問直線是否過(guò)一個(gè)定點(diǎn)?若過(guò)定點(diǎn),求出該定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于x的不等式x2﹣x﹣a(a﹣1)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案