分析 (1)由待定系數(shù)法設(shè)出橢圓的標(biāo)準(zhǔn)方程,將兩點(diǎn)坐標(biāo)代入可得方程組,解方程組得橢圓標(biāo)準(zhǔn)方程;
(2)設(shè)直線方程,再與橢圓方程聯(lián)立得:(1+3k2)x2+6k(1-k)x+3(1-k)2-9=0,利用中點(diǎn)坐標(biāo)公式即可求直線AB的斜率k;運(yùn)用韋達(dá)定理和弦長公式即可得到所求|AB|的長.
解答 解:(1)設(shè)橢圓方程為mx2+ny2=1(m>0,n>0).
∵橢圓經(jīng)過P1,P2點(diǎn),
∴P1,P2點(diǎn)適合橢圓方程,有6m+n=1,3m+2n=1.
解得m=$\frac{1}{9}$,n=$\frac{1}{3}$,
∴所求橢圓方程為$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{3}$=1;
(2)若直線的斜率不存在,
則由橢圓的對稱性及弦AB的中點(diǎn)為P(1,1),知不成立;
若斜率存在,設(shè)斜率為k,
則直線的方程為:y-1=k(x-1),∴y=kx+1-k,
代入橢圓方程,整理得:(1+3k2)x2+6k(1-k)x+3(1-k)2-9=0,①
設(shè)A(x1,y1),B(x2,y2),即有x1+x2=$\frac{6k(k-1)}{1+3{k}^{2}}$=2,
解得:k=-$\frac{1}{3}$,
當(dāng)k=-$\frac{1}{3}$時(shí),方程①為:4x2-8x+11=0,
∴x1+x2=2,x1x2=-$\frac{11}{4}$,
∴|AB|=$\sqrt{1+\frac{1}{9}}$•$\sqrt{4+4×\frac{11}{4}}$=$\frac{5\sqrt{6}}{3}$.
點(diǎn)評 本題考查了橢圓標(biāo)準(zhǔn)方程的求法,考查直線和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和中點(diǎn)坐標(biāo)公式和弦長公式,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,2] | B. | [0,2) | C. | (2,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4 | C. | 4$\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2(k+1)}$ | B. | $\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}$ | ||
C. | $\frac{1}{2k+1}+\frac{1}{2k+2}+\frac{1}{k+1}$ | D. | $\frac{1}{2k+1}+\frac{1}{2k+2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com