分析 (1)函數(shù)g(x)的定義域滿足$\left\{\begin{array}{l}{-2<x-1<2}\\{-2<3-2x<2}\end{array}\right.$,由此能求出函數(shù)g(x)的定義域.
(2)由已知得x2+mx+3>0的解集為R,由此能求出m的取值范圍.
(3)由已知得t=x2+mx+3能取遍一切正數(shù),由此能求出m的取值范圍.
解答 解:(1)∵函數(shù)f(x)的定義域?yàn)椋?2,2),
函數(shù)g(x)=f(x-1)+f(3-2x),
∴函數(shù)g(x)的定義域滿足$\left\{\begin{array}{l}{-2<x-1<2}\\{-2<3-2x<2}\end{array}\right.$,
解得$\frac{1}{2}<x<\frac{5}{2}$,
∴函數(shù)g(x)的定義域?yàn)椋?\frac{1}{2},\frac{5}{2}$).
(2)∵f(x)=log2${\;}^{{x}^{2}+mx+3}$的定義域?yàn)镽,
∴x2+mx+3>0的解集為R,
∴△=m2-12<0,解得-2$\sqrt{3}<m<2\sqrt{3}$.
∴m的取值范圍是(-2$\sqrt{3}$,2$\sqrt{3}$).
(3)∵f(x)=log2${\;}^{{x}^{2}+mx+3}$的值域?yàn)镽,
∴t=x2+mx+3能取遍一切正數(shù),
∴△=m2-12≥0,
解得m$≤-2\sqrt{3}$,或m$≥2\sqrt{3}$.
∴m的取值范圍是(-$∞,-2\sqrt{3}$)∪(2$\sqrt{3}$,+∞).
點(diǎn)評 本題考查函數(shù)的定義域的求法,考查實(shí)數(shù)取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意對數(shù)函數(shù)性質(zhì)的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {4} | B. | {3} | C. | {1,3,4} | D. | {3,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | 2 | C. | $\frac{2}{π}$ | D. | π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3,-2} | B. | {x=3,y=-2} | C. | {(3,-2)} | D. | (3,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com