設(shè)函數(shù)f(x)=-
13
x3+2ax2-3a2x+b,0<a<1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間、極值;
(2)若當(dāng)x∈[a+1,a+2]時(shí),恒有|f′(x)|≤a,試確定a的取值范圍.
分析:(1)對(duì)函數(shù)f(x)進(jìn)行求導(dǎo),根據(jù)導(dǎo)數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減可求單調(diào)區(qū)間進(jìn)而求出極值點(diǎn).
(2)將(1)中所求的導(dǎo)函數(shù)f'(x)代入|f'(x)|≤a得到不等關(guān)系式,再由函數(shù)f'(x)的單調(diào)性求出最值可得解.
解答:解:f'(x)=-x2+4ax-3a2.令f'(x)=-x2+4ax-3a2=0,得x=a或x=3a由表
精英家教網(wǎng)

可知:當(dāng)x∈(-∞,a)時(shí),函數(shù)f(x)為減函數(shù),當(dāng)x∈(3a,+∞)時(shí).函數(shù)f(x)也為減函數(shù);
當(dāng)x∈(a,3a)時(shí),函數(shù)f(x)為增函數(shù).
當(dāng)x=a時(shí),f(x)的極小值為-
4
3
a3+b;當(dāng)x=3a
時(shí),f(x)的極大值為b.
(2)由|f'(x)|≤a,得-a≤-x2+4ax-3a2≤a.
∵0<a<1,∴a+1>2a,f'(x)=-x2+4ax-3a2在[a+1,a+2]上為減函數(shù).
∴[f'(x)]max=f'(a+1)=2a-1,[f'(x)]min=f'(a+2)=4a-4.
于是,問(wèn)題轉(zhuǎn)化為求不等式組
2a-1≤a
4a-4≥-a
的解.解得
4
5
≤a≤1
.又0<a<1,∴
4
5
≤a<1
點(diǎn)評(píng):本題主要考查函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的正負(fù)之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時(shí)原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時(shí)原函數(shù)單調(diào)遞減.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|1-
1x
|(x>0),證明:當(dāng)0<a<b,且f(a)=f(b)時(shí),ab>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-
1-x
x
(x<0)
a+x2(x≥0)
,要使f(x)在(-∞,+∞)內(nèi)連續(xù),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1             (x≤
3
)
4-x2
(
3
<x<2)
0              (x≥2)
,則
2010
-1
f(x)dx的值為
π
3
+
2+
3
2
π
3
+
2+
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1-|x-1|,x<2
1
2
f(x-2),x≥2
,則函數(shù)F(x)=xf(x)-1的零點(diǎn)的個(gè)數(shù)為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1,x>0
0,x=0
-1,x<0
,g(x)=x2f(x-1),則函數(shù)g(x)的遞減區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案