已知映射A→B的對(duì)應(yīng)法則f:x→3x+1,則B中的元素7在A中的與之對(duì)應(yīng)的元素是
 
考點(diǎn):映射
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)映射的定義,像3x+1的值是7,求出x值即為所求.
解答: 解:由題意知,3x+1=7,
∴x=2,
∴B中的元素7在A中的與之對(duì)應(yīng)的元素是2,
故答案為2.
點(diǎn)評(píng):本題考查映射的概念、像與原像的定義.按對(duì)應(yīng)法則f:x→3x+1,x是原像,3x+1是像,本題屬于已知像,求原像.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:函數(shù)f(x)=lg(x2-4x+a2)的定義域?yàn)镽;命題q:?m∈[-1,1],不等式a2-5a-3≥
m2+8
恒成立,如果命題“p∨q“為真命題,且“p∧q”為假命題,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)的關(guān)系如下表所示:
x[-1,0]0(0,1)1
y=f(x)1234
則y=f(x)的值域?yàn)?div id="f5r75nr" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的三頂點(diǎn)是A(-1,-1),B(3,1),C(1,6).直線l平行于AB,交AC,BC分別于E,F(xiàn),△CEF的面積是△CAB面積的
1
4
.求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)函數(shù)中,在(0,+∞)上是增函數(shù)的是(  )
A、f(x)=3-x
B、f(x)=x2-3x
C、f(x)=-
1
x+1
D、f(x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)E在正方形ABCD邊CD上,四邊形DEFG也是正方形,已知AB=a,DE=b(a,b為常數(shù),且a>b>0),則△ACF的面積( 。
A、只與a的大小有關(guān)
B、只與b的大小有關(guān)
C、只與CE的大小有關(guān)
D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(
π
6
-2x)的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某市隨機(jī)抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)API的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計(jì)如下:
API[0,50](50,100](100,150](150,200](200,250](250,300]>300
空氣質(zhì)量優(yōu)輕微污染輕度污染中度污染中度重污染重度污染
天數(shù)413183091115
記某企業(yè)每天由于空氣污染造成的經(jīng)濟(jì)損失為S(單位:元),空氣質(zhì)量指數(shù)API為ω,在區(qū)間[0,100]對(duì)企業(yè)沒有造成經(jīng)濟(jì)損失;在區(qū)間(100,300]對(duì)企業(yè)造成經(jīng)濟(jì)損失成直線模型(當(dāng)API為150時(shí)造成的經(jīng)濟(jì)損失為500元,當(dāng)API為200時(shí),造成的經(jīng)濟(jì)損失為700元);當(dāng)API大于300時(shí)造成的經(jīng)濟(jì)損失為2000元.
(1)試寫出S(ω)表達(dá)式;
(2)試估計(jì)在本年內(nèi)隨機(jī)抽取一天,該天經(jīng)濟(jì)損失S大于500元且不超過900元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有8天為重度污染,完成下面2×2列聯(lián)表,并判斷能否有95%的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?
P(K2≥kc0.250.150.100.050.0250.0100.0050.001
Kc1.3232.0722.7063.8415.0246.6357.87910.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

非重度污染重度污染合計(jì)
供暖季
非供暖季
合計(jì)100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M:x2+y2-2mx-3=0(m<0)的半徑為2,則其圓心坐標(biāo)為
 

查看答案和解析>>

同步練習(xí)冊答案