已知△ABC外接圓的圓心為O,且數(shù)學(xué)公式,則∠AOC=________.

π
分析:設(shè)△ABC外接圓的半徑等于1,由條件可得 ,平方求得cos∠AOC=-,由此求得∠AOC的值.
解答:設(shè)△ABC外接圓的半徑等于1,∵,

平方可得 1+4+4•=3,解得 =-,即 1×1×cos∠AOC=-
再由 0≤∠AOC≤π 可得∠AOC=π,
故答案為 π.
點(diǎn)評:本題主要考查兩個(gè)向量的數(shù)量積的定義,兩個(gè)向量夾角公式的應(yīng)用,根據(jù)三角函數(shù)的值求角,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC外接圓的半徑為R,且2R(sin2A-sin2C)=(
3
a-b)sinB
,那么角C的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有如下4個(gè)命題:
①若cosθ<0,則θ是第二、三象限角;
②在△ABC中,D是邊BC上的點(diǎn),且BD=
1
2
DC,則
AD
=
2
3
AB
+
1
3
AC
;
③命題p:0是最小的自然數(shù),命題q:?x∈R,lgx≠1,則”p∧(?q)”為真命題;
④已知△ABC外接圓的圓心為O,半徑為1,若
AB
+
AC
=2
AO
,且|
AB
|=|
AO
|
,則向量
CA
CB
方向上的投影為
3
2

其中真命題的序號(hào)為
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廈門模擬)已知△ABC外接圓的圓心為O,且
OA
+
3
OB
+2
OC
=
0
,則∠AOC=
2
3
π
2
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

有如下4個(gè)命題:
①若cosθ<0,則θ是第二、三象限角;
②在△ABC中,D是邊BC上的點(diǎn),且BD=
1
2
DC,則
AD
=
2
3
AB
+
1
3
AC
;
③命題p:0是最小的自然數(shù),命題q:?x∈R,lgx≠1,則”p∧(?q)”為真命題;
④已知△ABC外接圓的圓心為O,半徑為1,若
AB
+
AC
=2
AO
,且|
AB
|=|
AO
|
,則向量
CA
CB
方向上的投影為
3
2

其中真命題的序號(hào)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省棗莊市高三(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

有如下4個(gè)命題:
①若cosθ<0,則θ是第二、三象限角;
②在△ABC中,D是邊BC上的點(diǎn),且;
③命題p:0是最小的自然數(shù),命題q:?x∈R,lgx≠1,則”p∧(¬q)”為真命題;
④已知△ABC外接圓的圓心為O,半徑為1,若,則向量方向上的投影為
其中真命題的序號(hào)為   

查看答案和解析>>

同步練習(xí)冊答案